Reusable
Software

DISTMBUTION STATEMENT R

Approved for pubiic release : i
 Dirmbution Unbauted Developing And Using Ada Parts

- in
Real-Time Embedded Applications

MCDONNELL
DOUGLAS

9 v

w

REPORT DOCUMENTATION PAGE ! s
1. AGENCY U3E ONLY {aave biank) | 2. IEPORT DATE [3. <EPORT TYPE AND DATES COVERED
1 27 April 90 ! Final 20 Jul 88 - 27 Apr 90
o . TITLE AND SUBTITLE . . 5. FUNDING NUMBERS
- Developing Ada Using Ada Parts In Real-Time Embedded . C: FO08635-88-C-0002
Applications PE: 64740F
| _ PR: 3672
{6, AUTHOR(S) TA: 01
.Constance Palmer WU: 01
{AFATL Program Manager: James W. Lund (AFATL/FXG) '
g7»¥RFCRnﬂNG ORGANIZATICN JAME(S) AND ADDRESS(ES, ~8. PERFORMING ORGANIZ™ "0
;McDonnell Douglas Missile Systems Company } REPORT NUMBER
P.0. Box 516 {
§St Louis MO 63166 i

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESSIES) i 10. SPONSORING MONITZRING
: \ g
'Air Force Armament Laboratory AGENCY REPORT NumetR
Aeromechanics Division

Guidance and Control Branch

t AFATL/FXG AFATL-TR-90-67

Eglin AFB FL 32542-5434

11 SUPPLEMENTARY NCTES

This report was not edited in the Technical Reports Section.

t23 L.STRIBUTICN AVAILABILITY <-ATEMENT 125 OISTRIBUTION CLLE
‘Approved for public release; distribution is unlimited

T BSTRACT Ntarimomy s T s

~3This manual provides practical guidance in the development and use of reusable Ada
software for mission critical real-time embedded applications. It covers the
reusable software development lifecycle, as well as the impact of software reuse on
the development of real-time embedded applications. The manual takes a broad
approach to the issues encountered during the entire lifecycle of parts development

and use. / o

R L ks ’L
a UBJECT TERMS) Ty AUMBEN
Reusable—éeﬁtwate, Missile Software, Software Generdtors, 225
~Ade»Parts, Software Parts 3#/ vl : ‘ ‘ 5. CR.CE .

i ! ' /

' - 1
[17 SECURITY CLASSIFICATION] q >E(um Y L;A»mc,\now]19 SECURITY CLASSIF!CATlON]*o LIMITATIONC‘ V3sTTacT!
L

F REPORT SF THIS PAGE “F ABSTRACT
UnClassified iUnClassified . UnClassified
.

]
{ e

R

DEVELOPING AND USING ADA PARTS
IN
REAL-TIME EMBEDDED APPLICATIONS

Common Ada Missile Packages — Phase 3 (CAMP-3)
CONTRACT NO. F08635-88-C-0002
CDRL SEQUENCE NO. A008

27 April 1990

AccesmLFgr ~*_—ﬁ'
NTIS CRag&t gj !
DTIC TaB =
Unannounced .

Justificaticn

By
Distributior |

T o

Avaldabity Codes

e
Augd 5: g1 o1 i
Dist Sihecial

Prepared for:

Air Force Armament Laboratory/FXG
Munition Systems Division
Guidance and Control Branch
Eglin Air Force Base, Florida 32542

Prepared by:
McDonnell Douglas Missile Systems Company
P.O. Box 516
St. Louis, MO 63166

S

e

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

PREFACE

This manual provides practical quidance in the development and use of reusable Ada software for mission
critical real-ime embedded (RTE) applications. It covers the reusable software development lifecycle, as well as
the impact of software reuse on the development of RTE applications. This manual is not intended as a set of
coding guidelines for writing reusable software, rather, it takes a broader approach to the issues encountered
during the entire lifecycle of parts development and use.

Two major challenges were faced in developing this manual: {1) addressing the diverse needs of a broad
specirum of readers; and (2) presenting practical information that has immediate applicability. The reader is
assumed to have some familiarity with Ada in order to understand the examples and the Ada-specific issues that
are presented.

This manual was developed as part of the Common Ada Missile Packages Phase 3 (CAMP-3) program. It was
developed by the Computer and Software Technology Center of the McDonnell Douglas Missile Systems Com-
pany, St. Louis, Mo., and was sponsored by the United States Air Force Armament Laboratory (FXG) at Eglin
Air Force Base, Florida.

ACKNOWLEDGEMENT

Special thanks to MSD/YB Air-to-Surface Ballistic Weapons SPO; Computer Resource Management Tech-
nology (CRMT) Program, ESD/AVSE; and AJPO/ATIP for their support of this project; and to Chris Herr for
developing many of the examples and case studies; to the reviewers for their valuable comments and sugges-
tions; and to the CAMP-1 and CAMP-2 staff upon whose work much of this current effort draws.

iti

—

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

’——

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Table of Contents

INTRODUCTION
1. INTRODUCGTION ..ottt e e e e et e et ve ettt b e et s et bt aaae e eeaatetaeeaseease s s s annnnsanees 3
1.1 Motivation fOr SOftWAIE REMSEcooiiiiiiiiiit e ittt e et e e e e et eeinae s 3
1.2 Barriers t0 SOMWAre REUSEooiiiiiiiiiiiiiiei e e e e e e et re e 4
1.3 Reuse in the RTE COMMUIIItYcccoiiiviiiiiiiii it en e ee e ee s ee e e e e e ea e e s e te v ea s, 7
T8 SUMMAYY ..ottt e et e e e e e e e e e e e e e e ee e e ettt st e seeaeeeaeeerevens b antnanaeas 7
1.5 ADOUL the MANUALooiiiiiiiiiiiiir ettt ee e e e e e e e e et 7
SECTION I: FOUNDATIONS OF SOFTWARE REUSE
2. PARTS DEVELOPMENT OVERVIEW ...ttt e 11
3. DOMAIN ANALYSIS ..ottt et e e et ee e e e v et e s e s ettt e e e ee e 13
3.1 Domain DefiftIOnoiiiiiiiiii e ettt e e aeeaa e 14
3.2 Domain Representationcoooiiiiiiii e 16
3.3 Domain EXPIOrationccoooiiiiiiieieiiiiiieia e e in e st et e e eeeeeees e ee e st s ettt na e breeeeteae e e 17
3.3.1 Analysis of Existing APPUCAHONSccoiiiiiiiiieiiii ettt eees e e en e e e 18
3.3.2 Application Charact@riStCsoiiiiiiiiiii ettt e e e e 19
3.4 D0omMaiN MOAEHNGooniiiiie et e ettt e e et a et a e e 19
3.5 Component SPeCifiCationccocueiiiiiiiiiiiie ettt 20
3.6 Component Development Verificationccocoiiiiiiiiiiiiien i 21
3.7 Classification Of PArtscooviiiiiiiiiiiiiiieiiee et ee e e e e et e e e e et eneeeaeae s 21
3.7.1 Faceted Classification Schemes et et braeee e ——rte e rr it rrbeee e iaa it aateae s eaes 22
3.7.2 Enumerative Classification SChemescoooiiiiiiiiiie oo 22
3.7.2.1 ABSLraction Levelooooiiiiiiiiiiei e e e et 22
3.7.2.2 D0main REIEVANCEccoooiiiiiiiiiiiiiee e et et e e e e e 24
3.7.2.3 Descriptive ATIDULESoooiiiiiieiiiiii et e e e e e ee e 24
3.7.2.4 Instantiaion TeChNIGUESocviiiiiiieie i e e ettt en e e e e e 24
3.7.3 Domain-Based ClassifiCaHONooiiiiiiiiiiiiiee e et eerere e ee e e e e e 27
BB TOOIS ...t et e st aa et 28
3.9 Management of the Domain ANANSIS PTOCESSooceviiiiiiiriiee ettt s e e 29
3.10 A Case Study: The CAMP Kalman Filter Partscooveiiiiimii oot 29
3.10.1 The Domain ANAIYSISooovimiiiiieiiiie i et e e e 29
3.10.2 Architecture of the Kalman Filter Partscccccoeoiiiiiiitii it ee e et e e e e eeeaeea e 31
3.10.3 IMPIEMENTAtONoiiiiiiiiiiiiiiiir et b e e er e e e e e e s se et ae e et te bt e et aaeae e e e e 32
3.10.4 Parts Use and RefiNemMentoooviiiiiiiiiiieeieiit et e e 33
LT SUIMIMAIY oottt ettt e e e et e e e e et as s e e e setarsee e e e saanreeeae e s erstneaeasesnasereeeees 33
4. REQUIREMENTS DEFINITION ... oot 35
4.1 Requirements DeveIOPMENTc..civiiveiiiiii ettt e e 35
4.2 Requirements Definitionccooiiiiiiiiiiii it e es e 36
4.3 Requirements REVICWcccoooiiiiiiiiiiiiiiiiic e et et 38
4.4 Definition Of @ PArtccoooiiiiiiiiiec e e, 38
5. ARCHITECTURAL DESIGN of SOFTWARE PARTSooiiiiiiiiiiiieiii ettt e 41
5.1 Overview of the CAMP Semi-Abstract Data Type Methodccooiveiiiiiiiieeeeeeee 41
5.2 Alternative Design Methodscccooiiiiiiiiiiiiiiii e e 42
5.3 Using the Generic Method to Design Partsc.ccccceviiiiiieiiei it 44
5.4 Interaction Between Parts ..ot 47
5.4.1 Parts Build on Other Partsooooiiiiiiiiiiee et 48
5.4.2 Parts Work Togetherooooiiiiiiii e e 49
5.4.3 Parts Facilitate Use of Other Partscccccooiiiiiiiiii e, 50
v

|

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

5.5 Design ConsIAEIaAtiONSccccoiiiveieriiieiiree ettt e e ceetie e e et e eeee e stbeeeeeee s s etmnenee e eetreeeena 51
5.6 Design GUIdEENES ...ttt ettt e e e e e 56
5.7 Ca82 SHUAIESoooiiiiiiiiiiii it ee et e e e e e ettt ae e eetenet e e s e e e 70
5.7.1 Case Study 1: Development of the CAMP Coordinate Vector/Matrix Algebra Package 70
5.7. 1.1 Domain ANBIYSIS ...ttt et e e e e et e e e e e et et earaaes 70
5.7 1.2 D@SIGN ..o ettt e teeaea e e s ae s n et et ee et e te et eeeeen e 71
5.7.1.3 MAINIENANCEooociiviiiiiiiiiiiiie ittt eeee et e ee e e et b e ee e e ettt ee e e et vataeeaeeeeestabaesese e sranarteeeseannreea s 75
5.7.1.4 Further ENhanCeMeNtsccciiiiiiiiiiier et e e et ae e e ee sttt e e e e et araeeaeneeeas 78
5.7.2 Case Study 2: Data TYDINGcooiioiiiiier ettt e e ettt eeee ettt eeae e sttt e ee e s s eenaeeaae e eneaess 79
5.7.2.1 Weakly Typed Partsooviiiieieiiiie e er e e e e ees ettt an e arte e aaaearenasaeena 79
5.7.22Strongly TYPEd Partscc.cvuvviiiiiiiiiee e 82
.8 SUMMMAIY ..ot ettt e et s st e et e et e ettt te e s 89
6. DETAILED DESIGN and CODING of SOFTWARE PARTSccooiviiiiiiiieie e 91
6.1 Merging Detailed Design and Codingc..cccooiiiiiiiiiiiii e 91
6.2 Identification of Additional Partsccoooiiiiiiiiiiiiiin e 92
6.3 DeSIGN REVIBWScooiiiiiiiiiiiiii ittt ettt e e e e e e e s e e e ettt e e e e e e e e 92
6.4 Design for EffiCienCYoviiiiiiiiiiiiee et e e e 95
6.5 Coding GUIAELNEScouiiiiiiiiiiiiiie ettt e e e et e e et e ettt 95
6.6 DOCUMENIAtION ...oiiiiiiiii ittt et e et e e e e e et b e e e et ettt e e e e e et atee e st teaeas 97
7. TESTING of REUSABLE SOFTWARE PARTSoooiiiiiiiiiiiie et 101
7.1 Unit and Package TestiNgcccocoiviiiiiiiiiiiiiio e e e e e e e ettt e e e ee e 102
7.1.1 Unit Test APPIOACRcoiiiiiiiiiii et 103
T2 SUIMIMAIY ..ottt ettt et eaetaae e en et asttr e tbe e as s aeeeesaeaeseaaaanaeaesesannnnsrnnnnes 103
8. OTHER TOPICS in PARTS DEVELOPMENTttt 105
8.1 ManagemeNnt ISSUESicviiiiiireiaeieeeririe ettt errrieaeee et e e et ettt aeartrbenneerereeaeseeeeeeaean e 105
8.1.1 Management SUPPOTEiiiiiii it 105
8.1.2 Process Managementcooiiiiiiiiiiiiiiii ettt et 106
8.2 SCOP@ Of REUSEeviviiiieiiiiiiiii et e ettt et e e e e e e e e e et et e e e ebt s e e e e et rsae et st ieee e 106
8.3 Parts Development Organizationsccccceeiiiiiiirieeeieeiiieieseeteririeeeescirsraeseeeeserarreee s enrereenns 106
8.4 Configuration ManagemMentcc.eoiiiuiiiiiiie et ettt e et e e ee et ee e e s e e s enne e, 107
8.5 MAINENANCEevviiiiiiiiiitiit ettt e e et e e e ettt e e sttt re e e e e et te s e e e se e s et ar e e e e eaaree e 108
8.5.1 Modification Of Partsccoociiiiiiiiiiiiii ettt e e s 109
8.5.2 Proliferation of Part Variantsccoiiiiiiiiiiiiiiiiiii et e e s ana 110
8.6 Ada Language Considerationsooovoiuiiumiriiierieeaeearar e e sttt bt arrereaeeerraeaeseesaean e snsnens 110
8.7 TOOIS ...ttt et ettt e et e et e b e eeae e b st et e e eann b eea s 111
SECTION II: APPLICATION OF REUSABLE SOFTWARE
9. PARTS USE OVERVIEW ...ttt ettt e e e et ee e 115
10. PLANNING for REUSE-BASED DEVELOPMENTccooiiiiiiiiiiiiiiiieee e 117
10.1 Cost Factors in Reuse-Based Software Developmentcccccoooiiviiiiiviiiiiic e 117
10.1.1 Factors INCreasing Costiiiuiiiieiiiiiiii oottt et e e et a s bbb bbb seaeeeaeeeseee e e 117
10.1.2 Factors Decreasing Costoooiiiiiiiiiiiiiiiiiiie e ee ettt e e e e 118
10.1.3 Weighing the FACtOrScoiiiiiiiiiii i e 118
10.1.4 Payback from Reusable SOffWareccooviiiiiiiiiiece e 118
10.2 Management SUPPOToiiiiiiiiiriiiiii it ittt e e ee e e e e e e e st s e bbbt b eaeereaaae e e 119
10.3 Additional Lifecycle ACHVIEIESoooiuiiiiiiiieiiiie e 121
10.3.1 Refinement of the Domain ANAlYSIScociiiiiiriiiiiie et e, 122
10.3.2 Project-Specific CoOMMONALILYoooiviiioiiiee i e e ae s r e, 122
10.3.3 Application of Reusable Componentsccccoieeviiiiiiie e SUTTUUUOROUR 122

10.4 Pitfalls in SORWAre ReUSEoooivvete et e 124

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

10.5 The Role of a Reuse Support Organizationccocovutiruiiiiiiiiiiiiieciiie e eeieeceenenr e saeeeeeaea 124
10.6 TOOIS fOr REUSEoociiiiiiiiiiiiiiii et ettt ettt et Vevererrrn, 125
10.7 CompPilers fOF REUSEoioiueiiieiiii e e i aeee et e eet e e e e s eet e e e ettt e e e esente e e s etanae s 126
10.8 Maintenance and Configuration Managementccocooiiiiiiniiiiiiniiiiceeie e 127
11. REQUIREMENTS ANALYSISccooiiiitiiiireertiiee e ettt s ettt e e e stas e e e as e et re e e s s snetnn e e e e eaaens 129
11.1 Parts IdentifiCatONccooccviiiiiiisir ittt ettt ettt eae et e ettt erae s 129
11.1.1 Tracking Parts USe ... e et e e e e e e e e e ae e, 130
T1. 1.2 TOOL SUPPOT oottt e e e oo e e ettt e e e e et e e e e e et e e e e e s eeeeeanees 130
11.2 Compiler ANALYSISoooiiiiiiiiiii e e e bbbt e e e s 131
11.3 DoCUMENEAtIONcooiiiiiiiiiiit e e ettt e e et e et e e e e e ettt e e e e e et e aeeraaaa 131
11,4 SUMIMAIY «.oooiiiiiiiiie ettt e ettt ee e sttt e e e ettt et e e eeatt e ae e et sbabbeaseees sttt e araeesstannaeesseannes 131
12. PRELIMINARY DESIGN of PARTS-BASED APPLICATIONSccoooviiiiiiieeeceeccceevee e, 133
12,1 Parts ANAIYSISuuuiiiiiieri ettt ecee e ee e oo e et e ettt ae et e eaeeete e sttt e aaaaaeaaaens 134
12.1.1 CloSeness Of Fitccoiiviiiiiiiiiiiitice it ee et e e et e e st ee e e e baeaete e s e srabee s e etabnraeeeeans 134
12.1.2 Design DIfferencescoooiiiiiiiiiiiii ettt e 135
12.1.3 TSt SUPPOTL ...evviiiiiiiiiiiie e e ee e e e e et e e a2 e e s se s st babas e e e e e e e aaanteaeanasenesaesenessnsrraenereeess 136
12.1.4 Development Standardsccccoooiiiiiiiiiiiiiii e e e e 136
12.2 Impact 0N D@SIGNocoiiiiiiiiiiii it e eee et ae e e bt e st ae e s 136
12.2.1 Levels Of ABSLIACHONcooiiiiiiiiiie et ce ettt e e e e e et ae e e 137
12.2.2 Data TUDING ..ouiiiiiiiiieeieeeee et e e ee e e ettt et e e e e e e e e e e ettt e e e e e s ananaeaenes 137
12.2.3 Project-Specific R@USEcccoiiiiiiiii et e e et 137
T2.3 ROVIBWS ..ottt e e ettt e e e e e e et e e ee ettt bt tr bbb aeaetateeeeeaa e 138
12,8 SUIMIMAIY ..oviiiiiiiiie et et eee e ee e e e e e e e e e eeee et e esaeseeesaaeeeeees e s et b sn s e e eeseeeaeasseetaessbennnrsnenes 139
13. DETAILED DESIGN and CODING of REUSE-BASED APPLICATIONSccccocoviiiiiiiiiiiiniininn, 141
131 IMPACE Of ROUSEovveiiiiiiiiiiiiiiiie ettt e et e s et e e e s ot ettt e e e e et e e e e e e 141
13.2 Tracking Parts US@ccoiiiiiiiiiii e et e s eaee e, 142
13.3 Parts MOGIICAtONcccviiiiiiiiieciie ettt 144
L1318 ROUVIBWS ...eiiiiiiiiiiiiiiiceieie et e s sttt e e e et e e eeee et ases etanente e b b st areteeaesteeeeeeeee e s eer e e neee s 145
13.5 Case Study: Incorporating a Reusable Kalman Filteroocoiiiiiiiiii . 145
13.5.1 Using the Kalman Filter Parts "As 18"o i et 146
13.5.2 Using Custom Code with the Kalman Filter Partsooooiiiiiiiiiiiiiee e 146
13.5.3 Modifying the Data Types Packagecccccccoiviiiiiiiiiiiiiniie et 149
13,6 SUIMMAIY ...ttt et et ee et ettt e et eeeeeeeeeeee e e e e e sttt aeaeaeaeneeeeeeeenenas 151
14. TESTING of REUSE-BASED APPLICATIONSocooiiiiiiiiiii et 153
14.1 Test-Related ACHVIHESouvviiiiiiiiiiiieiiieie et ae e 154
14,2 SUIMIMAIYoouiiiiiiiiiiiit ittt er e e e e eaes et ee et e ee e es s s se s raeteeeseaeae e as et ot eassnsnnssneae st eeeeaaesteeeasasen e saas 155
SECTION Ill: MAXIMIZING SOFTWARE REUSE
15. MAXIMIZING SOFTWARE REUSE OVERVIEWooviiiiiiiiiiiii e 159
15.1 LaNgUAge FeAtUIESccciiiiiiiiiiiiiiii ittt te et e et te e e e et e e e 159
15.2 Standardizationcccoiiiiiir i e e 160
I5. 3 TTAINING ..ottt e e et e e et e 160
15.4 AtUAE/CUIIUTEooiiiiiiiiii e e e ettt e e e e et a e e s e s e e e e s e snne e e e 160
15.5 Reuse of Non-Code Software Entitiescccoveeriiiiiiiiiie e 161
15,6 TOOIS ... e e e et 161
15.6.1 A Parts Engineering System for Reuse-Based Application Developmentcc.ccccoeveeininn 162
15.7 ReUSE SUPPOIt GrOUDoooviiiiiiiie ittt et e e e e ettt 163
L5 8 SUMMMAIYoiviiiiiiiiiiiiieiii e ettt e e e e e e e e ettt te e e e e e e ae e et e e e e e ennne e 164
vii

EEEEEEE—

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

16. ADA LANGUAGE CONSIDERATIONSoovvemiiieeeitiiiiitieeeeeeee e aeeiesaaaeessaesenneaesnneeeeevae e 165
16.1 Efficiency and EffectiVenesscooriuivree oottt et ree e 165
16.2 COMPILEI'S ..ottt ettt e et et e e e e e e e e e ee ettt eeeeaesaeeeeesrensraaenaaens 166
16.3 Chapter 13 FRATUIEScc.ciiiuiiiiiiii ettt cette et e et e e e ae e e et a e eetae s e eaae e eens 168
16.4 Ada OX oo e et et e e e e e e s e e e raaeaeaes 169
17. COMPONENT LIBRARIES ... et e 171
17,0 S0P ittt e et a e et e e e aaaaa s 172
17 2 LIDPary USRISooooiiiiiiiiiiii et e et e e e e e ettt e e e e e e e e e et a e e e e e e e s 173
173 Lbrary ENLIH@Soooiieriiiiiiii e et 173
17.4 Catalog Technologiesc.c.cooveiiiiiiieeeee e, et e et 173
17.5Screening Of Partsooooviiiiiiiiiii ettt 174
17.6 ENTY OF PAILSo.oeoveeieeeee et et e et ee e e e et ses e ee e e es e eeee e reeeeses s st 174
17.7 USEE SUPPOIT ..ottt e e ettt e e e e e et e eeee e 175
T7. 8 Part ARTIDULESooviiiiiieiiiiiiii ettt 175
17.8.1 Classifying Partscooiiiiiiiiiiiiiiiiiie ettt ettt e r et te e 176
17.9 Populating LIBrariescccciiiiiiiiiiiiiei et e e e 176
17.10 Library Evaluation Crteriaccoiuiuiiiitiiiee oottt e ee e 177
17.11 Case Study: The CAMP Catalogc.vvviiiiiiiieiiiriiie ottt eee e 179
18. APPLICATION-BASED SEARCH and RETRIEVALcoooiiiiieeeeeeee e, 183
15. SOFTWARE CONSTRUCTION TOOLSccoiiiiiiiiiiiiie ettt e, 187
19.1 Case Study: The CAMP CONSLIUCIOISouuviiiiiis et eeee et e e e e e e e e e v e e e e 187
19.1.1 An Example: The CAMP Kalman Filter Constructorcccccooeieoioiiiiiiie e 189
19.1.1.1 Kalman FIlter MatriCescccioiiiiiiiiiiiree s ettt s et e e e e 190
1. 1. 1.2 TaAHOIINGoviiiiiiiie e et e ettt ettt e e e e e e e 190
19.2 Future DIreCtionsccooiiiiiiii e e 191
APPENDICES
I OVERVIEW of the CAMP PROGRAMcooociiiiiiiiiiiti e, 195
[.1 Phase 1: Feasibility StUdy ... 195
1.2 Phase 2: Technology DemOonStrationc..coviioiiiiiiiiiiei i ceeie e et ee e e 195
1.3 Phase 3: Technology Transfer and Refinementccooooiiiiiiiiiiiii e 196
I SUMMARY of the CAMP 11TH MISSILE APPLICATIONcoociviiiiiiiiiiie e 199
1.1 What Is the 11th Missile?cccooiiiiiiii e 199
T2 ReQUIT@IMENEScoiiiiiiiiriiiiiii oo e e e et e e e e e e e e e e ettt e e e e e e e e e e e e e e bt eren e s 200
ILB RESUILS ...ttt e e ee e e a ettt e e teea e e e s et es et st et b e b raeae e e e e aeeeee e e e e rann 201
Il PARTS DESIGN ALTERNATIVESottt e e e e e e 205
LT Typeless Methodoouiiiiiiiiiiiiiiii ittt ettt et e e ee e 206
1.2 Overloaded Methodccoiiiiiiiiiiiiiii e e, 207
HL3 Generic MethOdcoooiiiiiiiiii e et 208
II1.4 Abstract State Machine Methodooiiiiiiiiie e e 209
I11.5 Abstract Data Type Methodcooiiiiiiiiiiii e e 210
I1.6 Skeletal Code Methodooiiiiiiiiiiii e e 212
HL7 SUMMAIY oottt e e e e e e e e e e e e e e ettt ettt e e e e e e 212
References 215
vili

—7

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Figure 1-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 5-10:
Figure 5-11:
Figure 5-12:

Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:
Figure 5-19:
Figure 5-20:
Figure 5-21:
Figure 5-22:

List of Figures
Software Parts Use in Missile Software Systemsccccccevviviiiiieniiiieenn, RUUTITORR
Model Of the DA PrOCESSc...cueeiiieeiieiiiiiic e
Vertical and Horizontal Domains Overlapoooovvieiiimimeeieiiiiee e
Domain EXPIOTationouuuiiiiii oot
Using a Canonical Domain Structure in@a DA ..o
CAMP Kalman Filter Parts Domain Utility Matrixccoooviiiiiii e
Three Levels of Commonalityc..cccoeiiiiiieiiiiiis e
CAMP Parts Taxonomy
TYPES Of PAtS ...ttt
High-Level View of Missile Kalman Filter Operations
CAMP Kalman Filter Common Architecturec.cccoovevieeeeeieiiia
Software Parts Use in Missile Software Systemsc..ooovivireeeeee i,
Requirements Specification for a Reusable Partcoccoovvieiieiiiiiiiie e,
A Generic Package Can Be a Partcccccociviiiiiiiiiiiii e
Generic Packages and Subprograms Can Be Partsccoooiiviiiiiieeeeeceeen
Non-Generic Units Can Be Partsc.cccooviiiiiiiiiiie e
Reusable Parts esign Methods ...
Comparison of the Six Reusable Parts Design Methodscccceeeiiiiiiie i
User Substitution of Low-Level Partscccviiiiiiiiec e
Example of Use of Ada Generics in Design of Reusable Parts
Commonality Captured in the Generic Part Bodyc.ccccoooiviiiiiiiiiiiiiiieiiire
Assembling a North-Pointing Navigation Systemcccc.ccccciiniiiiccciee,
Some Parts Build on Other Partsccoiiiiiiieeee e
Parts Work Together ... e
Parts Facilitate Use of Other Partsccc.oovviiiiin e e
Required Operations Obtained Through Use of Generic Formal Parameters
Sample Instantiations of Geometric_Operations Parts Using Default Routines
Sample Instantiations of Geometric_Operations Parts Using Specialized Sin_Cos Proce-
dure
Distance_to_Current_Waypoint Function (Version 1)
Distance_to_Current_Waypoint Function (Version 2)
Abstract Data Structures Hierarchyccccoiiiiiiiiiiii e
Alternate Abstract Data Structures Hierarchy ...,
Updated Generic Packageoooeiiiiiiiiiiii e
Predefined Instantiations of Generic Packagecooovvviiiiiieeiiice e,
Use of Instantiated Package with Renamingcccoooiiiine e,
Use of Instantiated Package without Renaming
Top-Level Design of Coordinate_Vector_Matrix_Algebra Package (Prerelease Version) .
Top-Level Design of Coordinate_Vector_Matrix_Algebra Package (Release Version 1.0)

Figure 5-23-a: Top-Level Design of Coordinate_Vector_Matrix_Algebra Package (Release Version

1.1)(Part 1 of 2)

Figure 5-23-b: Top-Level Design of Coordinate_Vector_Matrix_Algebra Package (Release Version

Figure 5-24:
Figure 5-25:
Figure 5-26:
Figure 5-27:
Figure 5-28:
Figure 5-29:
Figure 5-30:

L1)(Part 2 0f 2) ..o e
Modified Top-Level Design of Vector_Operations Packageccc...cooceevi.
Weakly Data Typed Package (Float)ccooooviviiiiiiiiiiiiiin S OTITUT PR RUTR
Use of Weakly Typed Non-Generic Package
Weakly Data Typed Package {Generic)
Strongly Data Typed Package (Inflexible)
Use of Multiple Trig Packagesccc.cooouvviiiiiiiniviiiiie e SUTPRURUUTR
Strongly Data Typed Package (Flexible)

S

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Figure 5-31: Use of Multiple Flexible Trig Packagesc....occuviiiiiiiieeieneeeicieaniie e, 88
Figure 6-1: For High-Level Parts, Detailed Design is Codeccvvviiiviieeeeenni i 93
Figure 6-2: Simple Parts Require Few Commentsccooiiiiiiiiiiiiiiiiireiiiiiiireiciei i eenree e e e 93
Figure 6-3: Complicated Parts Require More COmmMentsccoocvvviimirirenirieeieneeeeeenenaninennn, 94
Figure 6-4: Parts Can Be Designed for Various Degrees of Efficiencycccccoonirniininnnninnn, 96
Figure 6-5: Complicated Parts with No Commentsc.oiiiiiiiniiiiiiiereierieirieie e eae e 98
Figure 7-1: Parts Testing Cucle ...t e 102
Figure 7-2: Package Alignment_Measurementscoooeeveriiiiiiiiiiiiiiii i e e e e enrin e 104
Figure 7-3: Procedure Cancel_Measurementcccccoeiiiiiiiiiiiiiiieiici i e 104
Figure 8-1: Alternative Parts Development Organizationsccoeiiiiiiviieeeeeeeiiiiiee e 108
Figure 10-1: Software Lifecycle ACHVIIESc....coivviruriiieiiieie oo e oot 121
Figure 10-2: Parts Use and Development Cyclecccooooiiiiiiiiiiiiiiiiiiiiiee e 123
Figure 10-3: The Role of a Software Library in the Development Lifecyclec.ccccoovviiieiiinnn.. 125
Figure 11-1: Reuse and Requirements Analysiscccceciiiiiiiii e, 132
Figure 12-1: Use of Parts at Architectural Design Timecc.ccooeviiiiiiieie e 137
Figure 12-2: Software Parts Use in Missile Software Systemsccccooviviiiiiiiiiiiinenne. 138
Figure 12-3: Reuse and Preliminary Designccccoiiiiiiiiiiiiiiiiicieeee e e 140
Figure 13-1: Kalman Filter Parts Bundleccocciiiiiii e, 147
Figure 13-2: Using the Kalman Filter Parts "As Is"coocciiiiii e 148
Figure 13-3: Kalman Filter Parts Instantiate Other Partsc.cooveviiiiiiiieiiiiiiiieee e 149
Figure 13-4: Replacing Parts with Custom Codeoeeiiiiiiiiiiii e 150
Figure 13-5: Reuse and Detailed Design/Codingcccoeiiiiiiiiiiiiiiiiiiiiiicicieeee e 152
Figure 14-1: Test APPrOaChooiiiiiiii i et e 154
Figure 15-1: Summary of Tools for Software ReUSecooieeieiiiiitiiieieeeee e, 162
Figure 15-2: The CAMP Parts Composition SYstemoooiiiiiiiiiiis e 163
Figure 16-1: FORTRAN in Ada: Ada Language Features Do Not Force Good Design 166
Figure 16-2: Utilization of Ada Language Featuresccooeoeeiiiioieee e eeeeee e 167
Figure 17-1: CAMP Catalog Parts AtrbULesccccviiiiiiieiiiiii et 180
Figure 17-2: CAMP Parts Taxonomycccceceeveeeeeeeeenn... TP R S OUUUUPPUEUPURITN 181
Figure 18-1: CAMP Parts Exploration Approachescccoccooiiviiiiiiiiiiiiiiie e 184
Figure 18-2: CAMP Missile Software Modelouueiiiiiiie e 185
Figure 18-3: CAMP Missile Model Walkthrough Exampleccoovveiiiiiiiiiii e, 185
Figure 19-1: CAMP Schematic ReUSEcooiiiiiiiiiiiiiiii e 188
Figure 19-2: High-Level View of Missile Kalman Filtercccoccceiiiiiiiiiiini e 189
Figure 19-3: CAMP Kalman Filter Parts Hierarchyccccoiiiiiiiiin e 189
Figure I-1: CAMP ProdUCtscieiiiiiiii e et e 197
Figure II-1: 11th Missile Hardware Designcccocoiiiiiiiniiiiiiiiic e 200
Figure II-2: Overloaded Operator Caused Problems for Compilerccccvviivieiiiiiiiiiiiiiin. 202
Figure I1-3: Compilers Had Problems Finding Default Subprogramscccccccocoveviiiiiniiin . 203
Figure II-1: Reusable Parts Design Methodsccccocooiiniiiiiiiiiiiii e 205
Figure IlI-2: Strong Data Typing Examplecccccoiiiiiiiiiiiini e 206
Figure HI-3: Typeless Method EXamplecccoiiiiiiiiinniiii e 207
Figure 1lI-4: Overloaded Method EXampleccccccieiiiiiiiiiiiniei e 207
Figure IlI-5: Generic Method Example ..o e 208
Figure III-6: Tunneling of Parametersccoooiiiiiiii i, 209
Figure 1lI-7: Abstract State Machine Method Examplec.....cooviiiiiiiiiin e 210
Figure II-8: Abstract Data Type Method EXamplec.ooooveveeeiiiiiviiiiiieeee e 211
Figure HI-9: Skeletal Code Template Method Examplecccoeiiieiiiiiiiiiieeeee, 212

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Table 1-1:
Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 3-5:
Table 3-6:
Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:
Table 5-9:

Table 5-10:
Table 5-11:
Table 5-12:

Table 6-1:
Table 7-1:
Table 8-1:
Table 12-1:
Table 13-1:
Table 13-2:
Table 13-3:
Table 16-1:
Table 1I-1:
Table 11-2:
Table 1I-3:
Table 11-4:
Table 11-5:

List of Tables

Barriers tO SOfWAre REUSEccccceeeeirieetiiiteeeeeeeeeeeee e e etireae e e e e e irnrae s e ee e 5
The CAMP Domain Representation Setoooiiiiiiiiiiiieiiiieeriveee e e 17
CAMP FUNCHONAL AFEASiiiiiiiiiei e eeeeeiiae ittt e ee e e e e e e ee e e e ab e s eee e e e e aaaaae e 17
CAMP Parts TAXONOMYcooviiiiiirtiitie e te e ee et e e e ae e teaaeaaeaeseeee et ererene e 26
Initially Identified Kalman Filter Partsoooovimruioie i e, 31
Steps in @ Domain AN@IYSIScooioirieiiiiiiiiie ettt e e e e 33
Major Products of a Domain Analysisooooiiiiiiiiiiiiiii e 34
Data Typing COMPATISONScccieiiiieeiieeeeeiiee et e e e e e e ee e e e e aeee e 57
Various Degrees of Data TYPINGcccccvivimiiiiiiiie ittt eee e ee e e e e e 59
Bundling by Type versus CIAsscoooieiiiiiiiiiiiiiio e eee e e et e e e e e ee e 62
Operations Implemented Via Multiple Packagesccccccovviieniniinnne e, 65
General versus Coordinate Matrix Operationccccoiiiiiiiiiiiinie e 71
Interface to Weakly Typed Non-Generic Packagec..cccocoiiieieiiiiieee e 80
Use of Weakly Typed Generic Package in Weakly Typed Application 81
Use of Weakly Typed Generic Package in Strongly Typed Application 81
Interface to Weakly Typed Generic Packagecc.c.oooviiiiiiiiiieaiiie i e 82

Strongly Typed Part in Weakly Typed Applicationcccoooooeeiiiii, 83

Interface to Multiple, Inflexible Trig Packagesccocoeeviiviiviiiiiieiiie e, 85

Use of Flexible Package in Multiple Applicationsccooveeeeiiiiiiiiiniiiiieecee e 87
CAMP Code Header Information (DOD-STD-2167)occovvvvviviiiiinieiee v, 100
Unit- and Package-Level Test Decision MatriXc..cccooeviiiiiiiiiiiiiiiiieeeee e 103
Items Under Configuration COontrolccoooivviiiiiiiii e 108

Software Design Review QUESHONSccoviviiviiuiiiiiiiieiieee e ee e 139

Summary of CAMP Parts Usage in the 11th Missile Application 143

Summary of CAMP Parts Used in the 11th Missile Applicationcc..ccccvoernnen. 143

CAMP 11th Missile Parts Usageccccccecuiiiiiriiiiiiniin e 144

Use of Chapter 13 Ada Features by the CAMP 11th Missilec.cccccoieeennniin.. 169
Processors and Their FUNCHONSo 200
11th Missile Effort ... 204
11th Missile Size - Parts Method ...ttt 204
11th Missile Productivity - Parts Method ..ot 204
Effect of Parts on 11th Missile Effortoooooeiiiii e, 204

DEVELOPING and USING ADA PARTS In RTE APPLICATIONS

xii

[rm—

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

List of Acronyms

ACM Association of Computing Machinery

ACVC Ada Compiler Validation Capability

ADL Ada Design Language

AFATL Air Force Armament Laboratory

AFB Air Force Base

AlAA American Institute of Aeronautics and Astronautics
AMPEE Ada Missile Parts Engineering Expert (system)
ANSI American National Standards Institute
ART™ Automated Reasoning Tool (Inference, Corp.)
BDT Basic_Data_Types (CAMP)

CAMP Common Ada Missile Packages

CASE Computer-Aided Software Engineering

CCB Configuration Control Board

CDRL Contractual Data Requirements List

CPDS Computer Program Development Specification
CPPS Computer Program Product Specification
CPU Central Processing Unit

CsC Computer Software Component

CsCl1 Computer Software Configuration Item

CSuU Computer Software Unit

CVMA Coordinate_Vector_Matrix_Algebra (CAMP)
DA Domain Analysis

DoD Department of Defense

DOD-STD Department of Defense Standard

DSMAC Digital Scene Matching Area Correction
DTIC Defense Technical Information Center

ERA Entity-Relationship-Attribute

FIFO First-In First-Out

FORTRAN FORmula TRANslation

FQT Formal Qualification Testing

FSED Full-Scale Engineering Development

FSM Finite State Machine

GPMath General_Purpose_Math (CAMP)

GPS Global Positioning System

i

fi——-"

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

GRACE™

IDD

IRS

ISA

ISO
JOVIAL
KFDT
LCO
LISP
LOC
LRM
MDMSC
MIL-STD
MRASM
NDS
NIH

PDL
RAPID
RC
ROM
RTE
SCp
SDD
SDF
SDpP
SDR
SIGAda
SRS
STARS
STD
STLDD
STP
TERCOM

Generic Reusable Ada Components for Engineering
Hardware-in-the-Loop

Interface Design Document

Interface Requirements Specification

Inertial Sensor Assembly

International Standards Organization

Jules Own Version of International Algebraic Language
Kalman_Filter_Data_Types (CAMP)

Lifecycle Object

List Processing (language)

Lines of Code

Language Reference Manual

McDonnell Douglas Missile Systems Company
Military Standard

Medium Range Air-to-Surface Missile
Non-Developmental Software

Not Invented Here

Parts Composition System

Program Design Language

Reusable Ada Packages for Information Systems Development
Reusable Component

Read Only Memory

Real-Time Embedded

Software Change Proposal

Software Design Document

Software Development File

Software Development Plan

Software Discrepancy Report

(ACM) Special Interest Group for Ada

Software Requirements Specification

Software Technology for Adaptable, Reliable Systems
Software Test Description

Software Top-Level Design Document

Software Test Plan

Terrain Correlation Mapping

xiv

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

TLCSC Top-Level CSC
UDF Unit Development File

——

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS INTRODUCTION

INTRODUCTION

INTRODUCTION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

—

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS INTRODUCTION

CHAPTER 1
INTRODUCTION

Software has increasingly become a limiting factor in the deployment of new systems. While hardware tech-
nology has advanced rapidly and experienced declining costs, software costs, as a percentage of project
development, have increased. Greater demands are being made of the software that is embedded in advanced
systems. For example, the F-4 fighters flown during the Vietnam era contained no software, the F-16 is
estimated to have 236,000 lines of code, and the B-1 Bomber is estimated to have 1.2 million lines of code
(Reference {2]). Not only is the sheer quantity of software increasing, but it is playing an increasingly critical
role. These increasing demands have led to schedule delays, cost overruns, product quality and reliability
problems, escalating maintenance costs, and a shortage of adequately trained software engineers. This situa-
tion is commonly referred to as the "software crisis." This "crisis,” first identified in the mid-70s, is still with us
today.

There is no panacea for a problem of this magnitude: dramatic changes are needed in software development
processes, but these changes will also raise new issues that must be addressed before the solution can effectively
be applied. Programming language standardization and software reuse are two means of effecting at least
some of the gains that are needed. Ada has become the standard language for mission critical systems (Refer-
ence [14]), but software reuse is still not a widespread reality. Many of the issues related to standardization on
Ada have been addressed, but this is not the case with software reuse: there are many new issues facing an
organization that wants to develop and use reusable software components. Many of these will be addressed in
the remainder of this manual.

1.1 Motivation for Software Reuse

The potential benefits of a parts-based approach to software engineering are quite significant, but they are
predicated on the assumptions that a given application area exhibits significant and continuing levels of com-
monality that can be exploited through the development and application of reusable software components, and
that methods (and tools) are available for facilitating/enforcing a parts-based approach to software develop-
ment. In order to maximize potential benefits, reuse needs to be planned rather than allowed to occur in an ad
hoc manner; there must be a systematic approach to parts development and use. Ad hoc reuse (e.g., people
working in close proximity sharing code) has been practiced for many years, but in order to realize the produc-
tivity gains that are needed to overcome the software crisis, this process must be formalized at more than the
code-sharing level.

Software reuse can increase software development and maintenance productivity; lead to higher quality, more
reliable software; and conserve and preserve software engineering expertise. Although increased software
development productivity is often cited as a key reason to practice software reuse, some of the real gains may
come from increased reliability and lower maintenance and enhancement costs. Maintenance costs may be cut
dramatically because parts will have been thoroughly and reliably tested prior to release. Rigorous testing of
software parts is critical because the impact of errors in software parts can be much greater, due to their wide
dissemination, than it is for custom software. Parts sets with varying degrees of reliability will not be trusted and
will, most certainly, not be used. Reusable software also provides an organization with a way to capture and
conserve its critical software engineering expertise.

——

INTRODUCTION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

There are many views on the level at which reuse should take place: there is reuse of code, design, require-
ments, analyses, etc. Research has been done in all of these areas. The area with the highest potential for
near-term payoff is that of code reuse, including deliverable code, test code, simulation code, etc. Thus, most
of the issues discussed in this manual pertain to reuse of software code components, or parts. Reusable code
components can exist at many levels of abstraction; they can range from low-level mathematical operators to
complex architectural structures.

Reusable software parts can be defined as pre-built software components which have been explicitly designed to
be used in multiple applications, generally within a given application area (see Figure 1-1). It is important to
note that there are other definitions of reusable software — some consider any software lifecycle object (LCO)
that is used, or capable of being used, more than once, regardless of whether it was explicitly designed for reuse
or not, to be reusable software. Reuse of non-code objects from the software development process is some-
times referred to as software engineering reuse (Reference [19)).

| b

SOFTWARE CUSTOM
SOFTWARE PARTS +

PARTS
SOFTWARE CUSTOM
7| PARTS -+ SOFTWARE [~ f

UBRARY
Figure 1-1: Software Parts Use in Missile Software Systems

Reuse of code is a good starting point for a software reuse program, but there are limits to the gains from code
reuse alone. Typically, the coding and corresponding unit testing activity consumes only 20% of the resources
of a software development effort, thus, even if 100% code reuse were achieved, the productivity improvement
would never actually reach 20% (because of the effort involved in actually reusing software). Although most
reuse efforts stress reuse of associated lifecycle objects, such as requirements specifications and design docu-
ments, reuse of more abstract designs and requirements remains, for the most part, a research issue.

Despite the widespread interest and research in software reuse, there is still not a major software components
industry, and much of the software in new systems is still custom-crafted. The U.S. DoD software engineering
community is not alone in its pursuit of software reuse; there are many commercial efforts, as weli as European
and Japanese efforts underway.

1.2 Barriers to Software Reuse

Software reuse will not just happen — there are significant psychological, sociological, managerial, and tech-
nical hurdles inat must be overcome. Effective reuse requires planning! Some of the major factors that have
impeded meaningful levels of software reuse from being achieved are summarized in Table 1-1.

—

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS INTRODUCTION

Table 1-1: Barriers to Software Reuse

® Programming Language Features and Capabillities
e Domain Analysis

® Not Invented Here (NIH) Syndrome

¢ Lack of Training in Software Reuse

¢ Few Support Tools

o Lack of Knowledge about Available Parts

¢ Locating Parts

¢ Integration of Reusable and Custom Code

* Documentation

o Proprietary Rights Issues

¢ Contractual/Product Liability Issues

¢ Organizational Profit Maximization In-the-Small
¢ No Requirement to Reuse

e Lack of Convincing Data on Benefits

Although software reuse is not programming language dependent, certain language features can facilitate or
hinder it. A language, such as Ada, which incorporates features that facilitate reuse and modern software
engineering practices, brings meaningful levels of software reuse within reach. Ada possesses facilities for
enforcing the design and construction of autonomous software units with clean, well-defined interfaces, and
developing software parts that are generic in nature and that can be easily tailored for a particular application
using features present in the language itself. Reuse has occurred in other languages but not at the level that is
possible with Ada (e.g., FORTRAN math/statistics routines have been very successful, but reuse in general has
not taken place in FORTRAN apgiications). Programming language features can facilitate software reuse, but
they do not guarantee it (e.g., an Ada generic package is not necessarily a reusable package). Thus, reuse is
not restricted to applications developed in any given language.

The need to conduct an in-depth domain analysis of the application area for which parts are to be developed is
a major barrier to implementing an effective software reuse program. Domain analysts, which is discussed in
detail in Chapter 3, is an examination of a specific application area which seeks to identify common opera-
tions, objects, and structures which are candidates for software parts. Domain analyses require intensive ex-
amination of existing software systems within the application area, and personnel skilled both in modern
software development techniques and in the application area.

The psychological barriers to software reuse should not be underestimated. Software engineers frequently by-
pass reusable software in favor of creating their own solution both because it is more "fun” to develop software
from scratch, and because they lack knowledge of and confidence in software that is available for reuse. Ad-
ditionally, some software engineers feel that reuse will lessen their creativity. It can, in reality, free them from
coding details and allow them to spend more time in the creative design process. Software engineers also
generally lack training in software reuse; they are taught to reinvent it rather than reuse it. As Jean Sammet
pointed out, "Ever since the second square root routine was written, the programming field has lost ade-
quate control of reusability” (Reference [36]).

The need to integrate reusable software components into new applications poses another barrier to effective
software reuse. Much of the software that is currently available was not developed specifically for reuse and can
be particularly difficult to understand and fit into a new application. Without adequate information about the
components, it may indeed be more cost-effective to redevelop software than to determine what is required to
fit it into a new application. As reuse becomes more widespread, developers will face the problem not only of

—

INTRODUCTION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

integration of reusable parts with custom code, but also the integration of parts sets from different developers.
These parts sets may have been developed under very different sets of development standards, and hence have
structures that are difficult to integrate. It is important to know the structure and standards of the parts being
used.

Reusers also face more mundane problems, such as documentation of software that includes reusable parts and
how to test that software. For instance, does the reusable software need to be completely retested at the unit
level or will integration testing suffice?

Protection of proprietary rights poses another obstacle to industrywide adoption of parts sets, but should not
pose a problem for company or program implementation of a software reuse approach. Incorporation of
reusable software in a deliverable product also raises contractual and product liability issues that have yet to be
universally resolved. There are often contractual restrictions on the use of non-developmental software or on
the reuse of software developed under contract.

Organizations are often structured as a collection of many smaller components, each with its own set of goals.
This structure makes it difficult to promote the sharing of resources, including software, and makes it difficult to
put a software reuse program in place. To be effective, everyone affected must be convinced of the benefits of
software reuse, including company management, software development staff, and project teams. They must be
convinced that software reuse is in their best interests (Reference [7]). Reuse at the corporate level takes not
only a significant effort investment, but also a leap of faith on the part of the managers. The payback from
starting a reuse program is not immediate. This is an investment in the future, but once the benefits of
software reuse become apparent and the technology matures, software reuse should be self-motivating, i.e., the
government shoukd not need to provide contractual incentives, but it will need to remove contractual barriers or
disincentives. Reuse can be practiced at virtually any organizational level, thus a reuse program could be put in
place at a project or program level first, and then expanded to include more of the organization.

Tool support for software reuse can facilitate the introduction and acceptance of parts-based software develop-
ment. Tools can free the engineer from mundane, mechanical chores and facilitate identification, retrieval,
evaluation, and incorporation of reusable software components in new applications. They can enhance
productivity gains by decreasing the cost of reuse. Tool support can range from a simple keyword retrieval
mechanism to a complete computer-aided software engineering (CASE) environment that supports all aspects
of software engineering with parts. The Japanese have shown that even simple keyword retrieval can be used
successfully in identification and retrieval of available components. As collections grow, it may become increas-
ingly difficult to identify the best match for a particular operation, thus, identification and retrieval techniques
are a major area of research within the reuse community.

Given all of these barriers to software reuse, it is not surprising that software reuse is not widespread. Ad hoc
reuse has been practiced for some time, but widespread, systematic reuse will require that adequate incentives
be provided to software engineers and their managers. These incentives can take the form of a combination of
rewards and mandates. Regardless of the form, a high-degree of discipline is required for an organization to
successfully establish and maintain a parts-based approach to software development.. Software reviews and
audits are one way to enforce a software reuse policy.

There have been relatively few concrete demonstrations of successful software reuse within real-time embedded
applications, and because of this, it is difficult to demonstrate the savings that can accrue from reuse. Much of

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS INTRODUCTION

the savings may come during the maintenance phase, and is not readily apparent to the manager starting a
new development effort. For the most part, hard data to support the belief that significant cost savings will
accrue in later stages of the lifecycle is still lacking.

1.3 Reuse in the RTE Community

Despite the apparent advantages of software reuse, the real-time embedded (RTE) software engineering com-
munity has been particularly skeptical of the practicality of software reuse within its domains. The RTE com-
munity has generally thought that software parts (i.e., components specifically written to be reused) are not
practical in real-time embedded applications because reusable software parts must be general enough to allow
broad use and generality has historically implied an intolerable loss of efficiency. Within non-RTE applications,
it is generally possible to trade run-time efficiency for significant increases in software quality and productivity,
but within RTE applications, this luxury can generally not be afforded.

RTE software is typically targeted at micro-processors embedded in products such as aircraft, missiles, and
satellites. Additional memory or processor upgrades are not a simpie matter since these embedded processors
must comply with severe limitations on weight, power, and volume, and must also conform to military specifica-
tions. The demand for greater functionality has more than accounted for the added capabilities provided by
advances in memory and processor technologies.

1.4 Summary

This manual is motivated by the fact that RTE community needs are different, and that development of reusable
software is different from development of one-shot or custom software. Reusable software has additional
documentation needs, testing may have to be more stringent, and there are procedural factors that must be
considered. These additional factors result in a higher cost to develop reusable code than to develop one-shot
code, but with reuse, that cost can be amortized across several projects. To be effective, reuse must be planned
and considered throughout the software lifecycle, and processes and tools that support a lifecycle approach to
software reuse are needed.

1.5 About the Manual

This document draws heavily on the Ada parts development and use experience gained on the Common Ada
Missile Packages (CAMP) project performed for the Air Force Armament Laboratory at Eglin AFB. This
program is described in Appendices I and II. Although the manual uses DOD-STD-2167A (Defense System
Software Development, Reference [16)) terminology, the content is applicable to non-DoD projects, as well.

The remainder of this manual is organized into three sections plus appendices.

¢ Foundations of Software Reuse: This section deals with the development of reusable software
and the special considerations of this type of software.

e Application of Reusable Software: This section deals with the development of applications
that incorporate reusable software components. It covers how to identify parts that can be used,
how to locate those parts, how to incorporate the parts, the special documentation needs, etc.

o Maximizing Software Reuse: This section covers special considerations in developing and
reusing Ada software parts, such as compiler maturity, software catalogs, etc.

e Appendices: There are three appendices which provide an overview of the CAMP program; an
overview of the CAMP parts use testbed effort, known as the 11th Missile Application; and a
description of the parts design method alternatives that were investigated prior to CAMP parts
development.

P ==

INTRODUCTION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

—7

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS FOUNDATIONS of SOFTWARE REUSE

SECTION 1

FOUNDATIONS OF SOFTWARE REUSE:
DEVELOPMENT OF REUSABLE COMPONENTS

“}

FOUNDATIONS of SOFTWARE REUSE DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

10

—-—

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OVERVIEW

CHAPTER 2
PARTS DEVELOPMENT OVERVIEW

Many objects are generated during the software development lifecycle — requirements, design, code, documen-
tation, test products (i.e., plans, procedures, and code). Each of these objects can be reused, but the reuse
process may differ depending on the representation of each of these objects and on the emphasis of the reuse
effort (e.g., some reuse programs emphasize the reuse of code, while others place the primary emphasis on
reuse of requirements and/or design, with reuse of code resulting from reuse of these other software lifecycle
products). Reuse of non-code software entities is an issue of finding or developing an adequate representation
scheme for those entities that will both permit and facilitate their reuse. The representation problem is one of
the primary reasons for the current emphasis on reuse of code-level components and their associated documen-
tation — the implementation language provides a rigorous and well-understood representation of the -eusable
object. Although there are definite benefits to code-level reuse, coding generally comprises only 20% of the
project resources, thus, reuse that concentrates only on code reuse, results in less productivity gain than reuse
throughout the lifecycle.

In this section we will discuss the foundations of a software reuse program that is concerned primarily with
code-level reuse, but recognizes the need to reuse related software lifecycle objects (LCQOs). The discussion will
range from domain analysis and component identification to the development of effective reusable software
components for RTE applications concerned with efficiency, accuracy, maintainability, and
understandability. We will also discuss some of the characteristics of good components, such as generality,
tailorability, and ease of use; the importance of quality; the level of documentation that is needed for reusable
components and how this differs from custom components; the need for strict adherence to programming
standards and good software engineering practices; and the importance of reviews involving domain experts.
Although the process of developing good reusable software is similar to that of developing good software in
general, there are some differences, e.g., the type of documentation; the level of testing; the need to anticipate
future uses; and the need to include domain experts and/or typical users in reviews throughout the lifecycle.
Sound software engineering is a necessary but not sufficient condition for producing reusable software.

When beginning a software reuse program, a systematic approach to identifying and developing reusable
software components is needed. This usually takes the form of a domain analysis (DA). During a domain
analysis, a domain is studied in depth, including an examination of a representative set of applications (if they
exist). The domain analysis results in development of a domain model that provides the framework for develop-
ment of reusable software components (i.e., it leads to the identification of common objects, operations, and
structures). Domain analysis is a challenging, time-consuming task.

Reusable components can also be identified by projects as the need or opportunity arises. This method of
identification is generally most useful once a core set of components has been identified for a particular
domain. It is a good way to enrich an existing parts set, but it is generally inadequate as a means of establishing
an initial parts base. Because of their involvement in the domain, project personnel are often able to identify
parts that would not be identified by an independent software reuse group.

A software reuse group can "harvest” or "scavenge” parts from projects, i.e., they can attend project reviews
with the specific intent of identifying areas (and software) that show potential for reuse. The software obtained
in this manner will generally not be directly reusable, i.e., a parts group will have to modify or restructure the

11

w

FOUNDATIONS of SOFTWARE REUSE
OVERVIEW DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

components for reuse, perform additional testing, and produce the documentation that is needed for reusable
components. These methods for component identification are discussed further in Chapter 8.

Reusable code components should be designed with the following goals in mind:

1. A part should provide a useful object or function to more than one potential application. Parts
should not be developed that have no future or are not really useful (e.g., parts that do not
provide a significant benefit over developing the software from scratch, such as a part that adds
any two numbers).

2. Use of parts should result in little, if any, loss of run-time efficiency.
3. Parts should be easy to use and flexible.

4. If it is possible that operations and/or objects that a part provides can be arranged differently
(i.e., in some way that is not currently envisioned), then the subparts should be directly usable by
the end-user.

Adherence to standards is particularly important in the development of reusable software. Software developed
in compliance with a reasonable set of standards is easier to understand, maintain, and integrate. Standards
should be applied to all areas of software development — coding, documentation, naming, testing, etc.

This section is organized by functional area within the software development lifecycle, rather than by lifecycle
phase (e.g., although test plan development generally takes place during architectural design, and test proce-
dure development takes place during detailed design, these activities are discussed under Testing). Domain
analysis and requirements definition are presented in separate sections, but they are not performed in a strictly
sequential manner. There is significant overlap in activities, and activities {or groups of activities) can be per-
formed recursively. As previously mentioned, the emphasis here is on the reuse of Ada components and their
associated lifecycle objects.

The remainder of this section is organized as follows:

¢ Domain Analysis: This chapter covers the principles and performance of a domain analysis. It
explains what a domain analysis is, provides some guidance in how it should be performed, and
identifies a number of issues that need to be addressed.

* Requirements Definition: This chapter discusses requirements engineering for reusable
software, and provides a definition of a reusable Ada component.

e Architectural Design: This chapter covers alternative design approaches and describes in
detail the approach used in the development of the CAMP Ada parts.

¢ Detailed Design and Coding: This chapter covers the aspects of detailed design and coding
that are unique to parts development.

» Testing: This chapter covers the special testing needs of reusable software.

* Other Topics: This chapter includes a discussion of Ada language issues, management issues,
configuration management, tools, standards, and maintenance issues that are specific to parts
development.

12

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

CHAPTER 3
DOMAIN ANALYSIS

The first step in developing reusable components within a domain is to conduct a domain commonality
analysis, or simply, a domain analysis (DA). In this chapter, the activities involved in performing such an
analysis are discussed: domain exploration, commonality specification, component development verification,
DA management, etc.

A domain analysis is an investigation of a specific domain or application area which seeks to identify a com-
mon "generic" paradigm for the domain. This is the primary means to identify candidate reusable software
components when initiating a software reuse effort. A domain analysis is similar to a systems analysis, but is
much broader in scope. It is not limited to a single system — it involves the examination of all, or a repre-
sentative set, of systems of a certain type (e.g., the CAMP domain analysis examined the operational flight
software from a set of 10 missiles), and may also include an examination of the underlying domain theory and
future direction of the domain. It results in the development of a domain model that represents a common view
of the domain. This model provides the framework for the identification of objects, operations, and structures
that can be captured as reusable software components.

A domain analysis is perhaps the single most important step in starting a software reuse program. Although it
is not the only way to identify reusable components, it is the best way to begin. Domain analysis has the
advantage that it is a systematic approach to uncovering commonality. Once a software reuse program is in
place, additional reusable components may be identified through other means which are discussed in Chapter
8.

Performing a domain analysis is one of the most difficult tasks in a software reuse program, particularly for
real-time embedded applications. This is because of the complexity of the applications. the efficiency require-
ments, and the tedium of poring over documentation and code produced on other projects. Domain analyses
are also relatively expensive to perform, requiring intensive examination of existing software systems within the
domain, study of the underlying domain theory, and the expertise of both well-trained software engineers and
domain experts.

It is important to point out that there is not, as yet, a standard procedure for performing a DA. Despite this,
the concept of domain analysis is not new. Domain analyses can be performed for reasons other than the
development of reusable software components. For example, a domain analysis might be performed in order to
develop a model of an application area for instructional purposes, in order to facilitate database design, for
documentation purposes, or to facilitate software maintenance or verification. Domain analysis and domain
modeling are both areas of current research interest. Neighbors performed early research into domain analysis
in support of reuse of analysis and design (see Reference [32]). As interest has grown in the area, there have
been an increasing number of studies undertaken to develop a standard process for performing domain
analyses.

The existence of domain commonality that is appropriate for capture as reusable software components cannot
be taken for granted. Although significant levels of commonality have been found in some application areas,
there is no guarantee that high levels will be found in all domains. For example, a high degree of commonality
has been found within various business-oriented systems (e.g., Raytheon Missile Systems Company, Reference
{24)), but this cannot be taken as an indication that this same level of commonality will be found within any or

13

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

all RTE application domains. Real-time embedded applications have special needs which must be taken into
consideration when developing reusable software — typically, there are hard real-time constraints, limited com-
puter memory and data storage available, and extremely high reliability requirements.

Domain selection may arise as an issue if parts are developed by a group that has no ties to a specific domain
(i.e., they are an independent parts development group rather than a project-directed group), or that has ties to
several domains. This has been addressed during Neighbor's work on Draco (see References [19, 32]). To be
a viable candidate for domain analysis and parts development, the domain must have both a future and a past.
It would not be a cost-effective use of resources to perform a domain analysis in an obsolete area, but there
should be past applications in the same or related areas to draw on in order to perform the domain analysis.
Mature, stable domains should prove to be the most cost-effective in which to work. The set of applications
available for examination (i.e., the domain representation set) must be sufficiently broad to adequately cover the
domain under investigation.

The model of the DA process presented here is based on experience on the CAMP program and a survey of
other industrial and academic software reuse efforts (References [32], [34], [22]). Figure 3-1 depicts a model of
the DA process. It consists of six major activities; each is discussed in subsequent paragraphs.

¢ Domain Definition: The process of defining or bounding the subject domain

+ Domain Representation: The process of selecting an adequate representation of the domain; this
includes domain theory, as well as a set of existing applications

¢ Domain Exploration: The process of studying the domain, including the theory, current state,
future state, and representative applications, in order to develop a domain model and identify
common operations, objects, and structures

* Domain Modeling: The process of developing a domain model that can be used as a framework
in the identification of reusable software components

¢ Component Specification: The process of specifying the common objects, operations, structures,
etc. for encapsulation as reusable software components

+ Component Development Verification: The process of verifying that candidate reusable software
components should be built

3.1 Domain Definition

Domain definition is the process of clearly bounding the subject domain. It is an iterative process that begins
with a definition of the domain that delineates the scope of the domain analysis, and proceeds to the develop-
ment of a domain model that serves as the framework for developing reusable components.

The domain must be defined in sufficient detail and with sufficient clarity so that both the customer and the
domain analysts have a common understanding of its scope. As the domain analysis proceeds and the analyst
gains greater understanding of the domain, the domain definition, or boundaries will undergo successive refine-
ment. The definition may start out as a natural language statement which seeks to define the domain (e.q.,
"The domain is missile operational flight software."), and proceed to a highly structured model by the time the
analysis is completed. The domain model is an important product of the domain analysis process because it
provides a framework for the identification and development of reusable components.

14

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

DOMAIN
DRFINITION

SPRCIFICATIONS SPECIFICATIONS
COMPONENT DEVELOPMENT VERIFICATION - E:} .

EEE ——— PEEC
i-- woftware component shouid be buit =-

Figure 3-1: Model of the DA Process

There are several complicating factors in the domain definition process:
¢ Fuzzy domain boundaries

¢ Overlapping domains (vertical domains)

¢ Intersecting domains (horizontal domains)
Domains do not always have clear-cut boundaries, thus the bounding process is, at times, subjective. Despite
this, the analyst should attempt to bound the domain as precisely as possible (within reason and given normal
project constraints on time and budget) in order to focus the analysis effort and prevent wasted effort during
later DA activities.

The fact that domains overlap is not in and of itself a problem. A problem arises if this overlap causes the
domain analysts to be sidetracked. A wvertical domain is an application-oriented grouping, whereas a
horizontal domain is an application-independent grouping. Examples of vertical domains include armonics
(i.e., armament electronics) software, avionics software, and C31 software. Armonics software is a vertical
domain which overlaps a number of horizontal domains, including signal processing, matrix algebra, and
abstract data structures. Figure 3-2 depicts overlapping vertical and horizontal domains.

It is easy to be sidetracked into identifying commonality, and hence candidate reusable software components,
not because they are needed within the domain under examination, but because they are within the horizontal
domain. Periodic reviews can help ensure that the domain analyst is addressing the correct domain.

15

...

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

VERTICAL DOMAINS
(Application Dependent)

Armonics Avionics
Software Software C3i
—]
Signal
Processing
2%
s g
Q g- Matrix
_ £ Agebra
<
Z 8
Q3
< ‘B Abstract
I g Data
Structures

Figure 3-2: Vertical and Horizontal Domains Overlap
3.2 Domain Representation

A domain is represented not only by the applications that have been developed in that area, but also by the
underlying theory of the domain and by the collective experience of domain experts. These are all things that
have to be taken into consideration during domain exploration.

The domain representation set is a set of applications which serves to characterize the domain under inves-
tigation. Although practical constraints prevent the examination of every possible application in a domain, the
goal is to select a set of applications that meets at least the following criteria.

« Sufficient data (e.g., specifications) must exist and be readily available for each selected applica-
tion. For example, an application for which there is only a code listing would not be an ideal
candidate. Ideally, the analyst should have access to requirements and design documents, as well
as to code. Access to the developers of the applications is a definite advantage. In an ideal
world, sufficient information about an application would be available from its documentation, but,
this is often not the case. Quality of the documents is an important consideration when selecting

representative applications, and can sometimes be traded-off with access to the original
developers.

e All areas within the domain of interest must be covered by one or more applications. For ex-
ample, if the domain of interest is missile flight software, then data should be included on anti-
ship missiles, air-air missiles, etc. The CAMP domain analysis examined 10 missile software
systems (see Table 3-1), and was required to include at least 2 of the following types: air-to-air,
air-to-surface, surface-to-air, and surface-to-surface. Additionally, the set had to include the func-

tional areas enumerated in Table 3-2. A concise domain definition will aid in the selection of a
representation set.

» Selected applications must not be based on antiquated or obsolete technology. Since the purpose

is to extrapolate commonality into the future, the use of applications which are out-dated will
result in parts that have no users.

16

—

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

¢ The domain representation set must be large enough to establish common- ‘ty, but must not be
so large that the analysts are overwhelmed with data. In general, there sho be a minimum of 3
applications in the set; it is unlikely that an adequate domain analysis could be performed on
fewer than three applications (Reference [3)).

When a domain analysis is performed in a new application area, there may not be existing applications to
examine. In this case, the domain will be represented by the domain theory and closely related applications.
Although an application may appear to be radically different from existing applications, further analysis will
undoubtedly reveal sub-areas that are closely allied with existing applications. It is rarely the case that a new
application is entirely different from everything that has preceeded it; progress is generally evolutionary.

Table 3-1: The CAMP Domain Representation Set

o Flight Software for the Medium Range Air-to-Surface Missile (AGM-109H)

o Flight Software for the Medium Range Air-to-Surface Missile (AGM-109L)

o Strapdown Inertial Navigation Program for the Unaided Tactical Guidance Project
e Guidance and Navigation Program for the Midcourse Guidance Demonstration

o Flight Software for the Tomahawk Land Attack Missile (BGM-109A)

o Flight Software for the Tomahawk Anti-Ship Missile (BGM-109B)

¢ Flight Software for the Tomahawk Land Attack Missile (BGM-109C)

¢ Flight Software for the Tomahawk Land Attack Missile (BGM-109G)

* Flight Software for the Harpoon Missile (Block 1C)

o Safeguard Spartan Missile

Table 3-2: CAMP Functional Areas

AREA SUB-AREA FUNCTION
Navigation Optimal Estimation Covariance Propagation
Coupled/Uncoupled Kalman Filters
Strapdown Navigation Quaternion Processing
Guidance Guidance Laws Pursuit Guidance
Proportional Guidance
Optimal Guidance
Control Autopilot Digital Filters
Engine Management Pulse Motor Logic
Antenna Control
Signal Processing Spectral Analysis Fast Fourier Transforms
Fuzing Optical Optimized Time Delay
Active
Semi-Active
Weapon/Aircraft Avionics Interface | Weapon Initialization Inertial Systems
Transfer Alignment

3.3 Domain Exploration

Domain exploration is the portion of the domain analysis concerned with identifying commonality within the
domain. It involves the study of domain theory; past, current, and future states of the domain; and repre-
sentative domain applications in order to identify commonality that can be captured as reusable operations,
objects, and structures. This analysis is similar to the knowledge engineering process performed during the
construction of an expert system — both are in-depth studies of a given domain that attempt to formalize a
body of knowledge. In domain analysis, this knowledge is needed to distill abstract requirements from existing
knowledge and concrete instances of requirements. Domain exploration leads to the refinement of the domain

17

IR

‘ FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

definition, and aids in the development of a domain model. Once again, the domain model provides a
framework for the identification and development of reusable software components. '

3.3.1 Analysis of Existing Applications

Much of the raw data for the domain exploration comes from software documents, including requirements
specifications, design documents, and code listings (see Figure 3-3). Although a great deal of information can
be gleaned from the requirements documents alone, the design documents often provide information that is
useful in understanding the requirements. The design documents can be useful in identifying internal
functionality that cannot be directly mapped to the external requirements of the system. Although code listings
are not generally useful by themselves, they can aid the analyst in understanding the requirements and design
specification.

It is likely that more parts will be identified once implementation of the originally identified parts set is begun.
There are two main reasons for this: (1) supporting parts will undoubtedly be identified as the previously iden-
tified parts are implemented, and (2) domain analysis is iterative. For example, during the CAMP domain
analysis, approximately 250 parts were identified, but the final count when implementation was completed was
about 450. Additional parts were needed to support the ones previously identified, and in some cases variants
of previously identified parts were developed.

APPLICATION SOFTWARE SYSTEMS
REQUIREMENTS AND DESIGN SPECIFICATIONS

S S I
S D D

- DOMAIN ANALYSIS

S 5 COMMON SOFTWARE

DOMAIN EXPERT o OPERATIONS o OBJECTS o STRUCTURES

Figure 3-3: Domain Exploration

Analysis of existing applications can be a tedious process. Some of the difficulties are discussed below.

e Language differences: The applications that comprise a representation set may be in different
programming languages, and not all of the languages may be familiar to the domain analyst.

¢ Style: Even when programming style standards are enforced within a project, the domain analyst
will have to deal with different styles across applications. Style can be a major impediment in
analysis of code.

e Conventions: Within each field there are different notational (as well as other) conventions with
which the domain analyst must be familiar in order to fully understand the code and documen-
tation.

18

5

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

o Arbitrary differences: Arbitrary differences can lead an analyst to incorrectly conclude that com-
monality does not exist when, in fact, it may. In some cases, two systems will perform an opera-
tion differently for no apparent reason, i.e., they could have used the same operation with no
change in operational capabilities. This is very difficult to determ'ne because lack of domain
understanding can often make arbitrary differences seem like substanir. < differences, and make
substantive differences seem arbitrary. Notational differences can lead an analyst to conclude that
two operations are different when really they are the same. This is one instance where the assis-
tance of a domain expert is important; he may more readily be able to determine significant
versus insignificant differences between applications.

o Levels of commonality: Another difficulty in performing a domain exploration is that commonality
will be at different levels of abstraction. That is, the analyst cannot just look for common low-
level subroutines; there may also be commonality at much higher levels, as well, e.g., subsystems,
portions of subsystems, architectures, etc.

3.3.2 Application Characteristics

One of the early goals in the domain analysis process is to identify the characteristics of the domain which
distinguish it from other domains. This information can aid in directing the detailed analysis. For example, in
the CAMP domain, it was noted that within the existing applications there was a high degree of data intercon-
nectivity and that heavy use was made of intermediate results. These observations led to the development of
components that separated intermediate results from the components that performed the calculations, so that
these intermediate results would be available to other functions.

3.4 Domain Modeling

There are several techniques that can be used in performing a commonality study. One technique that was
used in the CAMP domain analysis was the functional strip method (see Reference [27]). This involved an
analyst looking at a particular application function across all members of the domain representation set. For
example, within the CAMP domain representation set, an analyst would investigate how strapdown computa-
tions were implemented in all of the missile software systems. The narrower the functional strips, the easier it
is to detect commonality, although if the strips are too narrow, higher levels of commonality may be over-
looked.

An object-oriented analysis of the domain and each member of the domain representation set can also lead to
the identification of commonality across applications. The intersection of the analyses can be used as a good
starting point for the development of one or more domain models and associated reusable software com-
ponents.

One approach to analysis and model development is referred to as a Canonical Domain Structure approach
(see Figure 3-4). In this approach, an analyst attempts to develop a canonical structure for the domain being
analyzed. Development of this structure helps the analyst determine if an entity is common across multiple
applications and helps the analyst find areas in which other common components should exist. The existence
of a common diagramatic representation in a textbook for the application is one inc' :ator of the existence of a
common architecture for an application area or domain. For example, the existence of a diagram of the
structure of an autopilot in a textbook on the subject would be a good indication of a common architecture that
could be represented via software parts. ’

Other modeling techniques can also be used in performing a commonality study, e.g., entity-relation modeling.
Knowledge engineers in the artificial intelligence fieid are trained to work with domain experts to help them
formalize their knowledge for later encapsulation within some type of knowledge-based system; many of the

19

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Figure 3-4: Using a Canonical Domain Structure in a DA

knowledge engineer’s techniques may be applicable to performing a domain analysis, as there is significant
overlap in the goals of both efforts.

The analysis techniques and model development are closely allied. The model representation is dependent on
the analysis. For example, if object-oriented analysis techniques are used, an object-oriented model would,
most likely, be developed, whereas if a functional approach were taken in the analysis, the model would, most
likely, represent the functional structure of the domain.

3.5 Component Specification

When a common operation, object, or structure is found during domain exploration, it needs to be specified in
a rigorous form so that the part designer can understand the requirements. One of the most important aspects
of the specification is a clear definition of the variability that an object, operation, or structure must capture.
The variability should accommodate future, as well as current, applications. Obviously, this is a challenging
goal. Even with careful consideration and analysis, it will not be possible to anticipate all future uses of a
component, and hence it will not be possible to incorporate all of the variability that may be needed.

When a part is designed, it must be clear which portions must be tailorable; this information must be captured
in a preliminary software requirements specification for the parts. For example, if a part can be used with
different types of matrix storage representation, then this must be recorded. A domain expert is often needed
for this portion of the domain analysis, as well as for the earlier steps. In fact, it may prove useful to consult
more than one expert in order to get a different perspective.

In many cases, a textual specification will be insufficient to capture the specification of a reusable component.
Data flow analysis or an Ada-based specification can supplement, or in some cases replace, a textual descrip-
tion. Some work has been done on extending Ada into a specification language (for example, see Reference
[7)). The specification technique must be able to accommodate components at different levels of abstraction.

20

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

3.6 Component Development Verification

The fact that an operation, object, or structure is found to be common during the domain exploration stage of a
domain analysis is a necessary, but not sufficient, reason to build a part. It could be that the operation will
never be needed again or that there will not be enough future applications which will use the part to justify its
development. A project must establish both technical and business Go/No_Go criteria that will be used to
decide whether or not to bulld a part. The criteria should be established prior to this verification activity, and
should be developed in conjunction with the customer and domain experts. The criteria may depend, at least in
part, upon available resources (i.e., there may be less strict criteria if greater resources are available). The
Go/No_Go criteria can include factors such as those enumerated below.
* Number of uses a component would have seen in the domain representation set had such a part
been available

* Relationship of the proposed component to past and current practices, and to anticipated future
practices within the domain

» Complexity of the proposed component, i.e., a complex component that is expensive to develop
for each application but that will be used relatively infrequently, may still be worth implementing

¢ Anticipated future use of the component

The number of uses a component would have seen in the domain representation set had such a part been
available can be assessed by constructing a domain utility matrix that maps the common parts to the members
of the domain representation set that would have been able to use that part. This can identify the extent of
commonality of a “common” entity within a domain representation set. During the CAMP domain analysis,
domain utility matrices were constructed for various categories of parts (Reference {28]). Figure 3-5 shows the
domain utility matrix that was constructed for the CAMP Kalman filter parts.

MISSILE B B < ho) xE » d - T - S SR 2

KN PARTS X X X X X X X

Figure 3-5: CAMP Kalman Filter Parts Domain Utility Matrix

This type of mechanism can assist in verifying parts for inclusion in a parts set (and library). The technique also
highlights the importance of selecting an adequate domain representation set. If the set does not include an
adequate representation of the domain (including future trends), then sub-optimal decisions regarding which
parts to construct may be made.

Domain experts play an important role not only in identifying commonality, but also in validating proposed
parts. They should be cognizant of future trends and directions within their domains, and should use this
information in evaluating the validity of a proposed reusable part.

3.7 Classification of Parts

Given the large number of parts that are usually identified during a domain analysis,A it is imperative that a
classification scheme be developed that will cover the domain. The classification scheme is one of the products
of the domain analysis. The domain model and the classification scheme are generally closely related, with the
model imposing a natural order on the set of reusable components.

21

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

A classification structure aids not only the domain analyst, but also helps in the retrieval and use of parts by
end-users. A collection of reusable components does not have to be limited to one classification scheme. In
fact, multiple classification schemes will provide the parts user with more than one perspective in identifying
relevant parts.

Classification schemes can be categorized as faceted, enumerative, or domain-based. Each of these types of
classification is discussed in more detail in subsequent paragraphs.

3.7.1 Faceted Classification Schemes

Faceted schemes are constructive in nature — each facet or category contains terms which can be used to
describe an object. The classification of an object is constructed from terms in available facets (Reference [35)).
When a user is searching a collection that has a faceted classification scheme, he specifies terms for each of the
facets of interest. He does not need to specify terms for all of the facets, and generally, the order of specifica-
tion of the terms does not matter. This approach was first applied in library science, and has been applied to
several collections of reusable software components.

Faceted schemes provide a good deal of flexibility, but can be more difficult to develop and implement than an
enumerative scheme. They are easily extensible, and, thus should be well-suited for use with large and expand-
ing collections (Reference [35]). Experience to-date has indicated that they work best on collections of closely
related items (References [13], [9)).

3.7.2 Enumerative Classification Schemes

Enumerative schemes are generally hierarchical and seek to enumerate all possible categories in the classifica-
tion scheme. These schemes are generally straightforward to impiement, but less flexible than faceted
schemes, i.e., they are more difficult to expand (other than at leaf nodes) than a faceted scheme. In order to
retrieve items from a set which has been classified with an enumerative scheme, the user must have a fairly
good idea of the type of item he is looking for. For example, if a set of components were classified by
keyword, the user must be able to select the appropriate keywords in order to find applicable reusable com-
ponents. Depending on how the scheme was actually implemented (e.g.. did the system include a feature to
retrieve synonyms or to test for conceptual closeness of stored components), there could be a significant num-
ber of "misses” when searching, yet, this would not necessarily mean that applicable components were not
available.

Enumerative schemes for classifying software can be based on any number of features of the collection of
components. Some of these features are enumerated below, and discussed in the following paragraphs.
¢ Abstraction Level

¢ Domain Relevance (domain dependent, domain independent)
e Descriptive Attributes (e.g., keywords, developer, etc.)

» Instantiation techniques (i.e., the means of obtaining specific instances of a reusable component
for use in an application)

3.7.2.1 Abstraction Level

Software components can exist at different levels of abstraction. The abstraction level can be used to
categorize components. Three levels that have been identified are described below and depicted in Figure 3-6.

22

T ——

FOUNDATIONS of SOFTWARE REUSE
‘ DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

» Functional: Functional commonality involves a black-box view of common operations. This is
the type of commonality that has traditionally been associated with software reuse. For example,
a code segment that contains the equations for computing gravitational acceleration.

e Pattern: This involves the recognition that there are common patterns of logic that recur
throughout families of software systems, and are more complex than simple black-box functions.,
For example, finite state machines occur in missile software systems in the platform caging func-
tion, the launch platform interface function, and many other functional areas.

¢ Architectural: Architectural commonality involves the recognition that there are common models
of major components within software systems. This type of commonality is similar to pattern
commonality, but is on a larger scale. Examples of architectural commonality within the missile
operational flight software domain include a strapdown navigation subsystem or a pitch autopilot.
At an appropriately high level of abstraction, there is a common model for each of these subsys-

tems.
FUNCTIONAL LATITUDE p—
GRAVITATIONAL
Using a pre-packaged COMPUT —-—)
series of standard operations ALTITUDE ATIoN ACCELERATION

FINITE STATE MACHINE

PATTERN

Using a recurring pattern
of logic

STRAPDOWN NAVIGATION MODEL

ARCHITECTURAL E 4
Using a common model of a
E .;l F
a

multiple component subsystem
e

Figure 3-6: Three Levels of Commonality

The presence of multiple levels of commonality has a major impact on the performance of a domain analysis.
It means that the domain analyst must look beyond common functions and low-level operations, and be able to
develop abstractions of system objects and operations. This ability requires greater domain knowledge on the
part of the analyst.

23

——

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

3.7.2.2 Domain Relevance

Parts can be classified as to their relevance to a particular domain. Domain-dependent parts provide objects
and operations that are applicable primarily to the domain under investigation. The parts are said to belong to
a specific vertical domain. Domain-independent parts provide objects and operations that are highiy relevant to
the domain under examination, but are also useful to other domains, e.g., math parts will be applicable to a
broad spectrum of problem domains. These types of parts are said to belong to a horizontal domain. See
Paragraph 3.1 for a further discussion of horizontal and vertical domains.

3.7.2.3 Descriptive Attributes

Software parts can be described by a number of attributes, e.g., keywords, developer, hardware dependencies,
project for which they were developed, etc. These attribute values can be used in the classification process to
categorize the parts. Each component in the collection can be described by a set of attributes. Providing
access to reusable components via these attributes provides the user with different views of the available
resources.

One attribute that is often used to classify collections of reusable software is an attribute that captures the area
of functionality of the component. The areas can be arranged hierarchically to form a taxonomy. The CAMP
parts taxonomy is shown in Figure 3-7; Table 3-3 describes each of the categories in the CAMP parts
taxonomy.

3.7.2.4 Instantiation Techniques

In addition to classifying parts by abstraction level, domain relevance, and descriptive attributes, a reusable
component can be classified by the way specific instances of the part are generated. Three categories of parts
that are based cn instantiation method are simple, generic (both simple and complex), and schematic (see
Figure 3-8). Simple parts are parts that can be used "as is" with no tailoring (i.e., what you see is what you
get). Although reuse of simple parts may be of benefit, the real productivity gain will come from reusing more
complex structures. The problem with this is that complex structures are generally more difficult for the
software developer to incorporate into a new application. The key is tc provide him with a means of reducing
their perceived complexity (e.g., a system model of the parts) and facilitating their use (see Reference [7]).

Generic parts are parts that take advantage of the Ada generic facility for tailoring the part for a particular
application. A simple generic part is a software part that can be instantiated in a straightforward manner with
data type and subroutine information. This is a fairly low-level part with little or no dependence on other parts.
For example, a generalized first-in-first-out (FIFO) queue part could be developed in which the type of the data
object to be queued would be supplied and a specific FIFO queue component would be instantiated for that
type. In languages other than Ada, routines can sometimes be developed that perform something akin to
generic instantiation.

Meta-parts allow a family of components to be generated from a single part. This is advantageous because it
may not be feasible from a catalog size or user perspective, or cost-effective to have all family members in a
reusable parts library. Within the Ada realm, there are two types of meta-parts: complex generic parts and
schematic parts — they are distinguished by how specific instances of a family are obtained. A complex
generic part is a part from which specific instances can be obtained vie the Ada generic facility. These instan-
tiations are more complex than for simple generic parts; there may be multiple layers of generics with complex
interactions {e.g., the CAMP Kalman filter or autopilot parts).

24

w w
7
m >
m M Awouoxe | sped JWVD :L-g 2inbig
m W fuissanold 3!1:80 —
w m wihe L €Tl
s 891
B supwos el
< v
2
uounuoy)
m passn 1zet
o1
Z
paoIYe]
zer
ydisery pnunzy
72} e Iopue s
z gret J vzr |] <
o]
g "
FUOIEIIAUO, .
3 wo ithets oy uourwo) |
W €9’ €Tl
m teof D TT9t 1T91 X lonuoy opdoiny vounsod | Sunpnog »ESOM
zout porop 1ord vl reet TN]
£ 791 TSt Tl
4 —— y.
sarmonng
m st (g BuLag auso)y
g e i S IR S e T R e B e W |
m roit 61 q sl vl 171
© / . Vi
Z.
& urnn ey oy sodd, saowpIau] [oauo) fenuo) ¥ y siumsuo)
2) 1ensqy mq wawdinby TS wpinSuoN ping veuney uoudiaeN g
- o1l 61 81 rl gl 1 vl £1 [1l
[
L)
: _ I [[_ T I I I]
9 _
S
dAVD
m _
(=}

FOUNDATIONS of SOFTWARE REUSE

DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS
Table 3-3: CAMP Parts Taxonomy
CATEGORY NAME DESCRIPTION
Data Constants WGS72_Ellipsoid_Engineering_Data Parts which provide data constants used
WGS72_Ellipsoid_Metric_Data in a typical missile application
WGS72_Ellipsoid_Unitless_Data
WGS84_Ellipsoid_Engineering Data
WGS84_Ellipsoid_Metric_Data
WGS84_Ellipsoid_Unitless_Data
Universal_Constants
Conversion_Factors
Navigation Common_Navigation_Parts Parts which provide the basic
Wander_Azimuth_Navigation_Parts functionality of a navigation subsystem
North_Pointing Navigation_Parts
Direction_Cosine_Matrix_Operations
Kalman Filter Kalman_Filter_Common_Parts Parts which provide common Kalman fil-
Kalman_Filter_Compact_H_Parts ter functions
Kalman_Filter_Complicated_H_Parts
Factored_Kalman_Common_Parts
Factored_Kalman_Filter Compact_H_Parts
Factored_Kalman_Filter_Complicated_H_Parts
Guidance and Control | Waypoint_Steering Parts which provide the basic
Autopilot functionality of a guidance and control
subsystem
Nonguidance Control | Air_Data_Parts TLCSC Parts which provide the basic
Fuel_Control_Parts TLCSC functionality of a control subsystem for
operations outside of the guidance area
Mathematical Coordinate_Vector_Matrix_Algebra Parts which provide a variety of useful
General_Vector_Matrix_Algebra mathematical functions such as coor-
Standard_Trig dinate and matrix algebra, trigonometric,
Geormetric Operations and signal processing functions
Signal_Processing
Polynomials
General_Purpose_Math
Unit_Conversions
External_Form_Conversion_Twos_Complement
Quaternion_Operations
Equipment Interfaces | Missile_Radar_Altimeter Parts which provide standard interfaces
Missile_Radar_Altimeter_with_Autopower_On to specific hardware components or to
Clock_Handler general classes of hardware
Data Types Basic_Data_Types Parts which provide data types used in
Kalman_Filter_Data Types other parts or in a user application
Autopilot_Data_Types
Abstract Mechanisms | Abstract_Data_Structures Parts which provide abstract data struc-
tures and processes
General Utilities General _Utilitles Parts which provide other functions
Communication_Parts needed for missile or other weapons sys-
- tem operation

Schematic parts capture commonality that cannot be captured directly in the implementation language. A
schematic part consists of a blueprint together with construction rules for building a specific instance of the
part. Schematic parts differ from Ada generic parts in two important aspects:

¢ The generation of specific parts from a schematic part cannot be achieved via-an existing Ada
facility, and thus, is not language-specific, i.e., it can be accomplished in languages other than
Ada.

¢ There is no complete, compilable code to view until a specific component is generated from a
schematic part. For example, a finite state machine (FSM) may have actions associated with state

26

]

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

SOFTWARE PARTS

META PARTS

SIMPLE SIMPLE COMP LEX SCHEMATIC
PARTS GENERIC GENERIC PARTS
PARTS PARTS

Figure 3-8: Types of Parts

transitions. Although most software engineers would readily know how to implement an FSM,
the commonality cannot be captured using Ada alone because Ada does not provide for proce-
dure types that would allow the association of actions with states or transitions. Because the
structure of such a part is well-known, it is fairly straightforward to capture the construction rules
and generate customized components based on user inputs for states, transitions, and actions.

These types of parts are referred to as schematic in order to convey that they capture both the design of the
part and the construction rules. Schematic parts can sometimes be identified by the fact that there is some
common understanding among “experts” of the implementation process, yet there is not a straightforward way
to parameterize the implementation in the given implementation language. Schematic parts are discussed in
more detail in Chapter 19.

The introduction of schematic parts greatly increases the range of variability that can be built into reusable
components, i.e., reusable parts are no longer limited to software whose variability can be expressed using the
implementation language features alone. In order to maximize the benefits of schematic parts, an automated
means of translating the blueprint into an application-specific component is needed. The CAMP program
prototyped a tool referred to as a component constructor that generated specific instances of a schematic part
based on user-supplied requirements. Although a number of component constructors for generating
application-specific Ada components from schematic parts were developed during the CAMP prototype tool
development effort, much more work needs to be done in this area. The method employed in the initial
prototype required a significant effort to implement and maintain. Other researchers have also investigated
composition/generation techniques.

3.7.3 Domain-Based Classification

Domain-based or application-based classification allows the user to search a collection of components based on
domain or application knowledge rather than on attribute values or some other previously discussed criterion.
This requires the existence of an underlying domain model and application knowledge. In the case of domain-
based search and retrieval, available components can be associated with each node of a domain model, allow-

27

]

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

ing the user to traverse the model and obtain information about relevant parts at each node. An application-
based search scheme associates reusable components with portions of the application area.

This type of facility was also prototyped on the CAMP program in the AMPEE System Parts Identification
functions (Reference [30)). These functions provide the user with a means of identifying potentially applicable
reusable components based on knowledge the user has about the domain or application, rather than on specific
information about the available components. They provide high-level access into the parts catalog, and can be
used early in the software development lifecycle to identify potentially applicable software parts for the user.
The selection of parts is based on information that the user provides about his application or based on a model
of the application domain.

This type of facility can facilitate cost estimates, timing and sizing estimates, and help maximize reuse by
heightening awareness of available parts early in the software development lifecycle. It can be used during
proposal (or even pre-proposal) preparation, as well as during system requirements and design activities to
provide early identification of potentially applicable parts. Once the user has identified candidate components,
he can use a parts catalog to obtain specific information on such things as performance, environmental require-
ments, restrictions, etc. Although this type of facility was demonstrated on the CAMP program in the missile
operational flight software domain, it has broad applicability to other domains as well. These techniques are
discussed in more detail in Chapter 18.

3.8 Tools

Domain analysis has not been part of the traditional software development process, thus there is no standard
set of tools to support this activity. Existing tools which can aid during the DA process can be drawn from the
following areas.

» Software Requirements Engineering: Tools in this area are typically used to specify, analyze, and
document software requirements.

» Artificial Intelligence Knowledge Engineering: Tools in this area are typically used to collect, or-
ganize, and analyze knowledge within a domain of interest.

e Library Sciences: Tools in this area are used to classify and organize information coming from
many diverse sources.

Some of the types of tools that may support domain analysis are identified below.
» System analysis tools to facilitate the analysis of existing applications in the domain

¢ Tools that help the domain analyst find commonality (for example, some type of abstraction and
pattern matching tool set)

* Tools that help the analyst handle the large amounts of raw data inherently involved in a DA
{e.g., databases, editors, data screening or filtering tools, and categorization tools)

* Modeling tools for use in the development of a domain model. For example, entity-relationship-
attribute (ERA) modeling may be used to model the domain, thus tools that support ERA model
development can also support domain analysis.

* Specification tools that help the domain analyst specify commonality (e.g., domam modeling
tools, requirements specification tools)

¢ Knowledge engineering tools for use in acquiring and processing domain information.

28

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

Because there is still considerable research being performed in the area of domain analysis, the question of
optimal tool support is largely unresolved. This should not be a significant barrier to local reuse efforts because,
for smaller domains or for a single project, many of the domain analysis tasks can be performed using com-
monly available editors, database management systems, drawing tools, etc. The lack of tool support does
become a significant problem as the domain is broadened and the quantity of data to be processed increases.

3.9 Management of the Domain Analysis Process

The domain analysis team should consist of a senior software engineer trained in modern software engineering
methodologies, and one or more domain experts. A domain expert is needed to provide insight into the
domain that the software engineer may not have. Domain expert involvement is criticall Lack of domain
expert involvement can lead to the development of reusable components that bear little relationship to what is
really needed by domain application developers.

Periodic reviews during the domain exploration process provide valuable input to the domain analysts, make
the customer more comfortable with the process, and provide feedback to management on the progress of the
domain analysis. These reviews help to ensure that the correct domain is being addressed. Although the
domain analysis should not be too narrowly constrained — some "wandering” can lead to the identification of
additional commonality within the domain of interest — reviews can prevent the wandering from going too far
afield. Reviews should be held at different levels, but ultimately should include the domain analyst(s), domain
experts, the customer, and management. Domain expert involvement in the review process is critical in validat-
ing the results of the commonality study.

3.10 A Case Study: The CAMP Kalman Filter Parts

The following case study illustrates the process of identification, development, and deployment of reusable
software components in a real-time embedded application area.

Kalman filters play a significant role in missile operational flight software, and thus are represented in the
CAMP parts set. Basically, a Kalman filter for missile flight operations combines exiernal position or velocity
measurements with internal position or velocity measurements, taking into consideration the uncertainty of the
measurements when calculating an optimal estimate of missile position and velocity. The Kalman filter also
produces an optimal estimate of inertial sensor errors. Figure 3-9 presents a high-level view of missile Kalman
filter operations.

3.10.1 The Domain Analysis

During the CAMP domain analysis (Reference [28]), a common architecture of Kalman filter operations was
found in the representation set (i.e., in the set of 10 missile software systems that were examined); it is depicted
in Figure 3-10. In all, 13 parts were identified to facilitate the implementation of a Kalman filter for missile
operations. These parts are identified in Table 3-4 and discussed in detail in Reference [28].

One of the products of a domain analysis (in addition to the identification of common objects, operations, and
structures) is the identification and specification of the variability that must be provided (see Paragraph 3.5).
the Kalman filter parts, variability was found in the following items:

¢ The number of states in the Kalman filter

¢ The number of measurements in the Kalman filter

29

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

POSITION

POSITION CORRECTIONS

Nm
SENSOR ISA CORRECTIONS

Figure 3-9: High-Level View of Missile Kalman Filter Operations

COMPUTE @ PROPAGATE @
SYSTEM DESCRIPTION MATRIX STATE TRANSITION MATRIX
PROCESS NOISE MATRIX
UPDATE @ PROPAGATE ©
ERROR COVARIANCE ERROR COVARIANCE
¢ coveute @ —
KALMAN GAIN
®
OBTAN
MEASUREMENT VECTOR
MEASUREMENT COVARIANCE
MEASUREMENT SENSITIVITY MATRIX
UPDATE ®
ESTIMATED BAROR STATE VECTOR ®
FORM NAVIGATION CORRECTIONS
L| pmoPagATE
EAMOR STATE VECTOR

Figure 3-10: CAMP Kalman Filter Common Architecture

¢ The data type of the elements in the Kalman filter matrices

¢ The form of the measurement sensitivity matrix (referred to as "H"). This matrix could take two
different forms: "Compact_H" and "Complicated_H". The Complicated_H parts assume that the
measurement sensitivity matrix is sparse, which allows for a more complicated relationship be-
tween a measurement component and the components of the state vector. 'In the so-called
"Compact_H" parts, it is assumed that in any given row of the measurement sensitivity matrix,
there is only a single "1", with the other elements being zero (this implies that any measurement
component is a direct measurement of a single component of the state vector). Ten of the
Kalman filter parts provide an alternative representation for the measurement sensitivity matrix.

30

s

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

Table 3-4: Initially Identified Kalman Filter Parts

¢ Propagate State Transition and Process Noise Matrices

e Propagate Error Covariance Matrix Manager

¢ Kalman Update

¢ Kalman Update (Complicated_H Version)

¢ Propagate State Transition Matrix Manager

o Propagate State Transition Matrix

o Compute Kalman Gain

e Compute Kalman Gain (Complicated_H Version)

e Update Error Covariance Matrix

e Update Error Covariance Matrix (Complicated_H Version)
e Update State Vector

¢ Update State Vector (Complicated_H Version)

¢ Sequentially Update Covariance Matrix and State Vector
¢ Sequentially Update Covariance Matrix and State Vector (Complicated_H Version)

(Note: The measurement sensitivity matrix (H) relates the external measurement vector (Z) to the
state vector (X) as follows: Z=H*X. External measurements can be obtained from radar or
barometric altimeters, TERCOM, DSMAC, GPS, or some other external system. The state vec-
tor contains estimates of errors in navigation parameters and in inertial sensor data). Reference
[28].

Domain analysis also revealed that Kalman filter developers use matrix representations that cannot be captured
as Ada generic units. Although the CAMP parts set provides several matrix representations intended to provide
greater efficiency than a full storage representation (e.g., half-storage, diagonal, dynamically sparse), these
would not meet the requirements of missile Kalman filter operations. Kalman filter developers use a static
sparse representation for some of the larger, heavily used matrices in Kalman filter operations. A static sparse
representation requires that the developer know in advance the elements of the matrix that will be non-zero.
The representation and operations then capture and operate only on those non-zero elements, saving storage
(because only the non-zero elements are stored) and execution time (because the operations are performed only
on the non-zero elements of the matrix); program size can increase because program loop constructs are
removed in favor of operating on individual elements of the matrix. Because of the size of the matrices,
development of the code to perform the required matrix operations is a tedious task at best; the software
developer must manually determine which elements of the matrices will need to be multiplied together and then
produce the code, hoping he does not make any errors with indexing. In principle this process is straightfor-
ward, thus, the generation of the static sparse matrix representation and the associated operations can be
captured in a schematic meta-part and used as the basis for a component constructor. Meta-parts and com-
ponent constructors are discussed in more detail in Chapter 19 in Section lll, Maximizing Software Reuse.

3.10.2 Architecture of the Kalman Filter Parts

One of the primary design goals of reusable software parts is flexibility that will allow the parts to be tailored to
fit the needs of a wide range of applications. To this end, the Kalman filter parts were designed in such a way
that the software developer does not need to use all of the CAMP parts, i.e., he can replace any of the CAMP
Kalman filter parts with his own or other parts as long as the interfaces are satisfied. The structure remains the
same regardless of whether the user incorporates "compact” or "complicated" parts. Figure 3-11 depicts the
structure of the CAMP Kaiman filter parts. This structure has, in fact, been maintained as the CAMP Kalman
filter parts set has been extended.

31

I ———

FOUNDATIONS of SOFTWARE REUSE

DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS
KALMAN FILTER
PROPAGATE PHI and Q KALMAN UPDATE
SEQUENTIALLY UPDATE
P and X
I | I B
COMPUTE UPDATE STATE
PROPAGATE PHit KALMAN GAIN UPDATE P VECTOR (X) PROPAGATE P

Figure 3-11: Software Parts Use in Missile Software Systems

An analysis of the CAMP domain representation set revealed that, with the exception of the Complicated_H
parts, all of the CAMP Kalman filter parts could have been used in 7 out of 10 of the missile software systems
represented. This can be represented in a domain utility matrix as it was originally presented in the CAMP
Final Technical Report (see Reference [28]). A similar matrix is depicted in Figure 3-5.

3.10.3 Implementation

The Kalman filter parts identified by the original CAMP domain analysis were implemented, tested, and then
used on a demonstration program. This experience highlighted a number of pitfalls of parts development.

During development of the CAMP Kalman filter parts, there were repeated reminders of the importance of
domain expert involvement in parts development for such a complex domain. Kalman filter development is
generally performed by guidance and control engineers with several years of experience (one is not considered
an expert in the domain for many years). Because of the severe size and speed constraints imposed on missile
flight operational software, efficiency is of the utmost concern to these developers.

Although a domain expert assisted with the domain analysis, the parts development team still encountered
problems with requirements. The main problem was one of communication. Because of the English-like
nature of Ada, the domain expert, who was presented with a design developed in Ada, did not always realize
that he lacked a full understanding of the material presented to him. Conversely, the software engineer
developing the Ada design thought he had a better understanding of the domain than he did, and hence, made
unwarranted assumptions.

These are very common problems in parts development. The apparent simplicity of Ada (i.e., its English-like
syntax) can be deceptive. Additionally, it Is fairly common for someone to fancy himself a domain expert after
relatively short exposure to a topic. In an area as complex as Kalman filters, this can only cause problems.
Although there is no sure-fire way to eliminate these problems, awareness that they can occur, combined with
on-going, in-depth reviews by software engineers and domain experts can reduce their occurrence.

32

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DOMAIN ANALYSIS

The problem is not so much one of errors in the code, as it is that the parts do not have the functionality
needed to support the domain for which they are built. In the case of the CAMP Kalman filter parts, the parts
underwent requirements specification, top-level and detailed design, and testing, with no realization that the
parts would not meet the needs of a Kalman filter developer. The catalyst for this discovery was a request for
additional test data from the domain expert. In working through the test data, errors were uncovered in the
parts that had been implemented. This highlights the need for domain expert review throughout the parts
development activity. Discovery of errors this late in the development resulted in the need for significant
changes to the parts and to a tool that was under development to facilitate the use of the parts.

3.10.4 Parts Use and Refinement

The CAMP 11th Missile demonstration program used the CAMP parts in an actual missile application (see
Appendix II). As a result of their use on this program, the Kalman filter parts underwent modification and
extension. During the CAMP parts maintenance effort, additional Kalman filter parts were added to the CAMP
parts set; these provide an alternative approach to that implemented in the original parts set. Development of
those parts required additional mathematical parts as well. Because of the flexibility Inherent in the original
design, the additional type of Kalman filter was able to take advantage of the structure and many of the existing
parts.

The case study in Chapter 13, Paragraph 13.5 illustrates the use of the Kalman filter parts in a new applica-
tion.

3.11 Summary

The main steps in a domain analysis are identified in Table 3-5. Parts developers do not generally proceed
sequentially through all of these steps. Once a significant portion of the domain has been analyzed, parts
development can begin. Generally, additional parts (i.e., common objects, operations, and structures) will be
identified after the domain analysis has been "completed” and parts implementation has begun. For example,
during the initial CAMP domain analysis, approximately 250 parts were identified, but by the time the initial
parts set was delivered, it consisted of over 450 parts. Additional parts were identified that were needed to
support previously identified parts. Use of the parts can result in the identification of a need for both part
variants and additional parts.

Table 3-5: Steps in a Domain Analysis

¢ Select the domain

¢ Define or bound the domain

¢ Select a representation set

¢ Explore the domain

o [dentify common objects, operations, and structures

¢ Develop a domain model

¢ Develop a classification scheme

¢ Ciassify the parts

¢ ldentify a requirements specification technique and design methodology
o Develop preliminary software requirements for parts

¢ Verify that the identified parts should be developed

o Conduct in-process reviews by expert domain review team

It may prove advantageous to structure the parts development group so that the domain analysts and the
requirements/design engineers can operate in parallel. Although the structure of the group can vary quite

33

A
A

FOUNDATIONS of SOFTWARE REUSE
DOMAIN ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

significantly, the composition is critical to the success of the endeavor. This is not a task that can be performed
well by inexperienced software engineers. Highly skilled, creative people are needed; they must have ex-
perience with modern software engineering methodologies, techniques, and tools. Inputs from domain experts
are critical.

Table 3-6 summarizes the major products of a domain analysis.

Table 3-6: Major Products of a Domain Analysis

1. Domain model
2. Classification scheme
3. Preliminary specifications for the reusable components

34

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS REQUIREMENTS DEFINITION

CHAPTER 4
REQUIREMENTS DEFINITION

Requirements definition is a critical, but historically problematic step in the software development process.
Incorrect requirements are frequently the source of problems that become apparent later in system develop-
ment. Much effort has been expended over the years in developing methods, techniques, and tools to reduce
errors in requirements definition and specification, yet, there is still no ideal solution.

Requirements engineering for reusable software introduces another element of complexity to an already com-
plex process. Reusable parts must address a widerange of system requirements, rather than the requirements
of a single system. Thus, their specification must allow for their integration into a variety of different contexts,
and facilitate composition into larger software entities. While inputs and outputs will form the basis of inter-
faces to a part, the requirements must also address the issue of integrating lower level parts into higher levei
parts or subsystems.

The requirements must be abstracted to such a level as to allow functionality to be apparent. Application-
specific details should not introduced into the requirements for reusable components, i.e., the requirements
should reflect the wide applicability of the part. The parts will be incorporated into systems that have not yet
been defined, thus, the end-user must be able to integrate these parts into more complex operations. Ob-
viously, the parts must be flexible in their application. The specification should identify environmental depen-
dencies and requirements. While these issues would normally be considered even for single-use software, they
are particularly important for reusable code.

4.1 Requirements Development

Parts identification and development can be project-driven or under the control of an independent parts
development group; it is generally best if parts identification is project-driven and parts development is per-
formed by a specialized parts development group. In this environinent, the part developer may have little idea
of how a part will ultimately be used. This is a compound problem — reusable software developers generally
do not know how the reusable components will be used, and the developers generally lack the degree of
domain knowledge held by the domain expert. Because of this, it is very easy to develop incorrect require-
ments. Thus, it is critical to have the involvement of a domain expert in the requirements review process. This
involvement is necessary to ensure both correctness and that truly usable parts are developed.

The separation of domain expertise and implementation expertise was identified as a source of several errors
during parts development on the CAMP project. Although a domain expert was involved in the domain
analysis and some of the requirements specification, most of the requirements were developed by software
engineers in parallel with or after the domain analysis. When the requirements were developed by software
engineers, they were reviewed for correctness by domain experts. After the review, the requirements were
turned over to software engineers who, in many cases, did not have domain expertise. Two problems arose
from this situation:
¢ In some cases, the software engineer'’s lack of domain expertise caused him to misinterpret the
requirements. .

¢ In other cases, the domain expert thought that he understood the requirements and/or design
that were presented to him for review, but his lack of expertise in the specific programming
language caused him to misinterpret them.

In at least one case, the software engineer thought he understood the application area, parts were developed

35

FOUNDATIONS of SOFTWARE REUSE
REQUIREMENTS DEFINITION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

for a set of complex generic parts, a software tool was developed to support the use of these complex generics,
and when test data was sought from the domain expert, the domain expert identified a deficiency in the original
requirements. In this case, 10 packages were affected —

— General_Vector_Matrix_Algebra -~ Common_Navigation_Parts

- Kalman_Filter_Data_Types - North_Pointing_Navigation_Parts

- Kalman_Filter_Common_Parts — Wander_Azimuth_Navigation_Parts
- Kalman_Filter_Complicated_ H_Parts - General_Purpose_Math

- Kalman_Filter_Compact_H_Parts - Direction_Cosine_Matrix_Operations

These parts had already been designed, coded, and tested. Obviously, errors found at this late stage in the
development cycle are much more critical and costly to correct than errors found at a requirements
walkthrough. :

Although the need for stable, well-defined requirements is universal, the problems raised by poor requirements
are exacerbated in a software reuse environment. In many cases the software parts may be developed by
software engineers who lack specific application domain expertise, making it particularly important that the
requirements for reusable software be complete, with greater attention to detail, than requirements for custom
code. While this problem might not occur if the reusable software were being developed by the same groups
that were going to use it, it is a problem that is likely to occur whenever one group is developing reusable parts
for other groups.

The requirements need to be developed with an eye toward generality. Both the developer and the reviewers
need to evaluate whether the requirements are for a specific implementation of a given function or equation, or
for the general case. There is nothing inherently wrong with implementing a specific case as long as this is
recognized and intended.

When developing the requirements for an operation, extra attention should be paid to identifying any portions
of that operation which can be further decomposed and developed as separate reusable parts. For example, a
vector length calculation should not be built into the requirements for another part, but rather the requirements
for a vector length should be specified separately and then the vector length part can be used when specifying
other requirements.

4.2 Requirements Definition

A requirements definition for a part should contain functional, performance, and environmental requirements.
It shouid identify the objects and cperators that are encapsulated or exported by the part — it must capture
both the algorithm and the data flow. It should facilitate communication of a part's characteristics and provide
data on the environment required by the part, including dependencies which exist between parts. For example,
during the specification of the CAMP parts, a textual and a graphical technique were used. The textual tech-
nique consisted of a written description of the part; the graphical technique consisted of a data flow diagram.
Figure 4-1 contains an example of a CAMP Software Requirements Specification for a reusable part; the re-
quirements were documented in accordance with DOD-STD-2167. This level of detail for the specification of
simple parts may not be required, i.e., a textual requirements specification would probably suffice for simple
parts. More complex parts did benefit from the use of data flow diagrams.

Some researchers have advocated the use of formal specifications for reusable parts. Although there are some
advantages to the use of a formal notation, at this time the benefits do not appear to outweigh the costs. One

36

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS REQUIREMENTS DEFINITION

3.4.3 Navigation Parts
3.4.3.1 [R185] Compute East Velocity
This part shall calculate the East velocity component of a missile when a

local level, wander azimuth coordinate system is being used for navigation.
Figure 3.4.3-1 depicts the data flow nature of this part.

USER |7 Nominal east velocity ——~
—— Nominal north velocity ~—— COEEM
Application| == Wander angle Velocity
oftware East velocity

Figure 3.4.3-1. Data Flow of R185

3.4.3.1.1 Inputs
The meaning and typing of the input parameters for this part are given below.

(a) Nominal East Velocity (VEL,)} : This is the velocity in the
direction which would be East if the wander angle is zero. It is
of type Velocity.
(b) Nominal North Velocity (VELNN): This is the velocity in the
direction which would be North if the wander angle is zero. It is
of type Velocity.
(c) Wander Angle (WA): This is the value of the wander azimuth angle. It is
of type Angle.

3.4.3.1.2 Processing

The processing performed by this part ia described in the following equations.
VEL, := VEL, * cos (WA) - VEL, * sin (WA)

3.4.3.1.3 Outputs

The meaning and typing of the output parameters for this part are given below.

(a) East Volocitx (VEL:): This is the calculated velocity in the
East direction. It is of type Velocity.

Figure 4-1: Requirements Specification for a Reusable Part

suggested benefit of formal specifications is that they provide a basis for code generation via some transfor-
mation system. While this may be true, transformational systems for code generation are still, for the most
part, in the research stage, and the material presented in this manual emphasizes techniques that can be used
now. Another benefit of formal requirements is that they allow for the precise definition of a part, and thus,
may facilitate the mapping of user requirements to available parts. The cost to the user of formal notation is
generally quite high, as it requires him to learn another language above and beyond the implementation lan-
guage.

Extensions to Ada have been proposed in order to enrich the language into a requirements language. This is
usually proposed in conjunction with a tool that would perform analysis of the requirements and then go on to
produce at least the skeletal code (e.g., Reference [7)).

37

FOUNDATIONS of SOFTWARE REUSE
REQUIREMENTS DEFINITION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

4.3 Requirements Review

Rzquirements developed for reusable software should be subjected to rigorous review. With custom software,
there would generally be no reason for outside groups to review requirements specifications for another project,
but in the case of reusable software, it may be highly desirable, if not necessary, in order to establish that the
parts will meet the needs of future developers. External review teams should include both domain experts and
potential users of the parts.

Although it may not be necessary for a domain expert to actually develop the requirements, he must be in-
volved in a review of those requirements. The implication of this is that the requirements must be specified in a
form that is comprehensible to the domain expert. Graphical techniques may prove to be particularly useful.

4.4 Definition of a Part

There is no standard definition of a software component or part, but a project or organization involved in
software reuse will need to develop or adopt a definition. This will facilitate the collection of metrics associated
with software reuse. Metrics cannot be collected about reusable components unless a reusable component can
be identified. An issue to be considered in determining what constitutes a part is whether each software
lifecycle object (LCO) associated with a reusable object, operation, or structure should be considered an in-
dividual part, or whether the entire bundle of L.COs should be considered as one reusable component. Even-
tually, the software community will need to standardize on a definition so that data about software reuse can be
meaningfully exchanged and compared.

There are many alternative definitions. The set of criteria established on the CAMP program for identifying Ada
code parts is enumerated below; associated LCOs were not treated as separate parts, i.e., only Ada code parts
were counted. Obviously, other types of reusable software components would require a different set of criteria.

1. A part is an Ada package, subprogram, or task. A part can be any level of software unit (e.g., a
CSC or CSU in DOD-STD-2167A terminology).

2. A part must be usable in a standalone fashion.
¢ It may with other parts.

e It does not depend on other packages, subprograms, or tasks encapsulated with it to
perform a single function.

Figure 4-2 shows an example of a higher level generic part — Clock_Handler. The
Clock_Handler package maintains a clock. Even though a single application may not
require all of the routines in Clock_Handler, the routines could not logically exist alone:
it would make little sense to reset a clock that is never read. Therefore, the entire pack-
age is considered a part.

Figure 4-3 shows an example of a lower-level generic part — Latitude_Integration. This
package maintains a latitude. It is designated as a part because, although the Integrate
function could exist on its own, the Reinitialize procedure could not.

Figure 4-3 also shows an example of a generic procedure, Compute_Coriolis_Accelera-
tion, which is a part. Figure 4-4 shows an example of a generic package, Vector_Opera-
tions, which contains several subroutines, each of which is a part. In these cases, the
procedures, rather than any encapsulating packages, are designated as parts since the
procedures can logically exist on their own.

A part may require types or objects that have been encapsuiated with it. The subroutines
shown in Figure 4-4 are parts even though they require the data type, Vectors, defined
by the Vector_Operations package.

38

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS REQUIREMENTS DEFINITION

3. Organizational packages are not parts; and package bodies are never parts, even if they have
processing within them. Organizational parts are parts that group logically related parts
together, such as the CAMP General_Vector_Matrix_Algebra package that contains a collection
of packages that define general-purpose matrix types and operations.

Current_Time]

Converted_Time \

Reset_CIock\

Synchronize_Clock \

Elapsed_Time)

s indicates a part
o~ indicates a generic unit

Figure 4-2: A Generic Package Can Be a Part

NORTH_POINTING_NAVIGATION_PARTS

N\ indicates a generic unit

Figure 4-3: Generic Packages and Subprograms Can Be Parts

39

..~

FOUNDATIONS of SOFTWARE REUSE
REQUIREMENTS DEFINITION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

COORDINATE_VECTOR MATPIX_ALGEBRA

Vector_Operations

Vectors

ooy s agonerc und

Figure 4-4: Non-Generic Units Can Be Parts

40

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

CHAPTER 5
ARCHITECTURAL DESIGN of SOFTWARE PARTS

Reusable components must be designed with reuse in mind. It is generally not enough to simply use good
design principles and expect that another project will be able to lift packages, procedures, and functions out of
existing code for use in their applicatior,. Code designed and written without reuse in mind (even Ada generic
units) may be too tightly coupled to its original environment to be reusable.

Development of reusable software presents the designer with a conflicting set of design goals. In addition to
being reusable on a number of different real-time embedded applications, the design of reusable parts must
address flexibility, efficiency, reusability, ease of use, and protection against misuse.

In this chapter, the design methodology developed and used on the CAMP program for Ada parts development
will be discussed. Six alternative design methodologies were explored before one — the semi-abstract method
— was selected.

5.1 Overview of the CAMP Semi-Abstract Data Type Method

The CAMP methodology centers on what is referred to as the semi-abstract data type. Many researchers,
particularly those not well-versed in the special needs of RTE applications, have advocated the use of pure
abstract data types. This is a conceptually clean approach, but in practice may not be suitable for RTE applica-
tions. The abstract data type approach limits accessibility of the data structures, whereas the semi-abstract
data type approach allows the user to directly manipulate them. Although this may not generally be a good
practice, it is often essential in RTE applications, and when done cautiously, is acceptable. This direct access
provides the user greater control in fine-tuning the efficiency of his application. The CAMP methodology
makes use of strong data typing in order to provide the user with protection against misuse of the part by
enabling the compiler to perform checking on the types provided; the burden of strong data typing is eased by
providing defaults for generic parameters when this is feasible.

This design methodology addresses the conflicting goals that arise in the design of reusable software, and
produces viable reusable parts for real-time embedded applications. A set of reusable part goals — flexibility,
efficiency, reusability, ease of use, and protection against misuse — forms the basis of this method. Flexibility
is the extent to which parts can be modified or tailored to the specific needs of an individual application.
Although parts may be reusable, if they are not flexible and easily tailored, then the cost of using a part may be
prohibitively large — it may be less expensive to develop a new part than to tailor or modify an existing part. It
has been suggested that if a developer perceives the cost to develop from scratch is 70% or less of the cost to
find and use a part. then he will develop the part from scraich (Reference [43]). The issue of efficiency is one
which has long plagued software reuse efforts. The contention has been, and in many arenas still is, that parts
which are reusable can never attain the required efficiency for use in real-time embedded applications. Parts
must also be truly reusable, i.e., they must be suitable for use in a variety of applications, and they must be
forward looking rather than backward looking if they are to actually see use. The parts must also be easy to
use because difficulty of use increases the cost of reuse and may mean that the part will never be reused.
Protection against misuse refers to providing the user with protection from choosing the wrong part for a
given requirement or using a part inappropriately.

The CAMP design methodology meets the reusability goals and supports the development of parts which are
well-tested and may be used off-the-shelf. These seemingly conflicting design goals are achieved by exploiting

41

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Ada language features, such as generic units with default formal parameters (both objects and subprograms),
strong data typing, derived types and subprograms, and subprogram overloading. This design approach was
originally developed to address the needs of parts for missile operational flight software, but it is equally ap-
propriate for RTE applications in other domains.
¢ Generic units: The primary facility Ada provides which promotes reusability is the generic unit.
e Strong data typing: The ability to strongly type data is a key feature in Ada. However, the use of
strong data typing makes the design of generic packages and subprograms more complex; and
the interaction of Ada typing rules with other Ada features, such as generic units, is non-trivial.
This is why some software developers have developed Ada parts in a typeless fashion. Parts

which are typeless are very prone to misuse. If parts are intended for long-term use, then the
effort should be expended to build them in the best possible way.

e Generic object and subprogram parameter defaults: The use of strong data typing causes generic
units to be more complex. Specifically, the generic packages and subprograms must now import
many operations and functions which would otherwise be visible to them implicitly through the
scoping rules of Ada. Ada allows this barrier to be overcome by the specification of defaults for
generic object and subprogram parameters. The use of generic units for part design is further
discussed in Section 5.3.

These conflicting requirements make development of viable RTE parts more difficult, and have led some to the
conclusion that "since the generality needed for flexibility and portability will increase software overhead and,
consequently, decrease the software’s efficiency . . . it is very difficult to construct reusable missile software that
is still viable." (Reference (4], p 105).

5.2 Alternative Design Methods

Six methods for the design of reusable parts were considered early in the CAMP program. Figure 5-1 illustrates
these methods; they are summarized here and discussed in detail in Appendix III.

42

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

OVERLOADED APPROACH GENERIC APPROACH

ABSTRACT DATA TYPE &
ABSTRACT STATE MACHINE APPROACHES

l STANDARD
CALCULATE ... 5, INTERNAL
Z REPRESENTA-

T

d)‘*‘“l— l
e ndc—g

Figure 5-1: Reusable Parts Design Methods

o Typeless: All objects are declared as some basic type, e.g., float, integer, so there is no error
checking on data types. Typeless parts are simple to design and use, but are not robust.

¢ Qverloaded: There is a separate version of each part to allow for the different combinations of
data types that the user might want; this is the method used in the Ada predefined packages
Standard and Calendar. Parts are simple to design and use — the designer decides the com-
binations of data types that will be allowed for each part and explicitly declares parameter inter-
faces for these overloaded subprograms; the Ada disambiguation facility resolves calls so the user
does not have to specify which version of a part he wants. Strict type checking ensures that
actual and formal parameters match and that the values of the actual parameters fall within the
ranges allowed by the type def ““ons. The major disadvantage is the large number of parts that
have to be declared at the arch. _ tural level.

e Generic: This method uses Ada generic units to provide parts which are tailorable to user-defined
types. The major disadvantage is that generally the user would need to supply a large number of
generic parameters. This burden can be alleviated by the judicious use of default parameters, i.e.,
the designer provides for typical combinations of data types, and the instantiation will use these
functions as actual subprogram parameters. This method provides flexibility while simplifying
use. Parts can be set up for "tunnelling”" of operators, i.e., types and operators are predefined,
and the types can then be used to instantiate the generics and the operators will get pulled along.
The major advantage of this approach is that it incorporates strong typing and is flexible.

¢ Abstract State Machine: This is a "black box" approach. Problems with data typing and math-
ematical operators are alleviated because these are all fixed by the designer. The user is provided
with a high-level interface to the parts. There is no direct access to the data structures themselves
— all access iIs through the operators provided in the interface. Efficiency problems can arise
because of the need to perform data type conversions so that data will fit the internal represen-
tation. This could be overcome by creating multiple bodies that are efficient for a given situation,
but would increase the cost of parts development. It can be effective when the data structure

43

—

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

cannot be established in the package specification (e.g., Kalman filter operations).

» Abstract Data Type: The data structure is declared in the private section in a package specifica-
tion, thus the user is "stuck” with the data structure provided by the designer. To change it, he
must change both the specification where the data structure is defined and the body. This
method differs from the Abstract State Machine approach in that the interface consists of both
the predefined set of operators and the data structure itself.

o Skeletal Code: This approach provides great flexibility — the user is provided with a template to
be filled in. Problems may arise when more than one person is working a project — the template
may be filled in differently by different engineers resulting in duplication of effort in producing an
environment for such a part. There might also be a tendency to avoid strong data typing because
of the overhead in creating functions and operators for strongly typed data. This approach would
benefit from automated tools.

A thorough analysis of each method was conducted. Figure 5-2 summarizes the results of this analysis and
identifies the advantagec and disadvantages of the methods. The analysis focused on identifying the best
methods for support of complex operators inside the body of parts and for simplifying the use of parts
developed using the generic method. The generic method has the greatest potential for the design of "good"
reusable parts. Prior Data Sciences, a Canadian firm specializing in the development of reusable, real-time
software, has summarized the difficulties in developing reusable software based on generic units and of employ-
Ing parts created using generic units.

e "Library generic units are very difficult to write . . . the effort required to properly generalize
them is usually significant."

» "Generic units are also difficult to use, especially when they have many interrelated
parameters. The parameter matching rules can be very subtle."” (Reference [25], p 70)

Although generic units add complexity to the interfacing mechanism, the flexibility and protection against
misuse which they afford weigh heavily in their favor, Generic units also provide flexibility for tailoring to the
requirements of a specific application. The CAMP approach for the design of reusable parts utilizes the generic
method.

5.3 Using the Generic Method to Design Parts

Effective use of generic units for the creation of reusable parts requires reconciliation between the complexity of
the generic specification and the desired ease of use of the part. The description of the generic method in
Appendix Il discusses the conflict. In fact, the conflict entails the same trade-offs as those required to create
reusable software: generality vs. efficiency and ease of use.

The Ada generic facility can be exploited in the development of reusable parts. Low-level parts can be designed
as generic packages or subprograms. Higher-level parts can then be built from multiple levels of these generic
units. The user supplies actual parameters to instantiate the generic parts and tailor them to his application.
Multiple layers of generic units provide the part user with a broad choice in his selection of parts for an applica-
tion: he may use low-level parts to implement low-level features of the individual objects of his design, or
choose high-level parts which themselves serve as objects in his design. He can also replace low-level parts
with his own code and still make use of the higher level parts, Figure 5-3 illustrates this.

A generic part uses its generic formal parameters for tailoring the part to a specific application. For example,
the CAMP Compute_Earth_Relative_Horizontal_Velocities part (see Figure 5-4 for inputs, processing, and out-
puts) may be tailored for velocity type (feet per second, meters per second, miles per hour, knots) and for angle

414

fj-* -

FOUNDATIONS of SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN
METHODS ADVANTAGES DISADVANTAGES
TYPELESS APPROACH

ABSTFIACT STATE MACHINE APPROACHES

SKELETAL APPROACH APPROACH

ﬁm

A
' M><C>

G

No need to define new
operators
Simple interface

All operators provided
Flexible

Protected against
misuse

Protected against
misuse

Flexible

No protection against
misuse

Too many parts
Maintenance night-
mare

Flexible for new data User must provide
pes all operators
Protected against Complex interface
misuse (generics)
GENEFIC PARAMETERS
ABSTRACT DATA TYPE &

"All or nothing at
all" approach

Inefficient

Complex interface
(instantiate entire
package even it
only one subpro-
gram needed)

User must create
data environment

User must build in
own protection

Requires automated
assistance for
productive use

Figure 5-2: Comparison of the Six Reusable Parts Design Methods

45

(

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

COMPUTE EARTH RELATIVE
HORZONTAL VELOCMES

Sin Cos Ratio

Sin_Cos_Rate

Sin

Cos

L ELEICEHeEE

operator.

Figure 5-3: User Substitution of Low-Level Parts

type (radians, degrees, semicircles). In addition, the tailoring can extend to the return type of a sine or cosine

Compute_Earth_Relative_Horizontal_Velocities has three inputs:
» Nominal_East_Velocity (VELyg)
* Nominal_North_Velocity (VEL\p)
¢ Wander_Angle (WA)
It processes these inputs through the following equations:
o VELg := VELyg * cos (WA) - VELy * sin (WA)
o VEL, := VEL, * cos (WA) + VELy * sin (WA)
Producing the following outputs:
e True East Velocity
* True North Velocity (VELy)

(VELy)

Figure 5-4: Example of Use of Ada Generics in Design of Reusable Parts

In order to complete the tailoring, the part must also allow tailoring for operators essential for the enforcement
of strong data typing. Generally, operators are merely overloadings of predefined operators ("+", "-", "*", "/").

+

For more complex operations, the user must create his own subprograms, such as sine and cosine, filters,
matrix operations, etc. For these user-created operations, there are no language-defined constructs and the
generic specification cannot fully describe the required operation. Only the part's documentation and the user's
familiarity with the part’s internal design can support creation of actual parameters to match the formal generic.
Those features of a part which are truly common between applications, and are captured in the body of the

part, include:

46

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

+ The generic data types
o The sequence of operations

* Data types and operations not parameterized through the generic
Figure 5-5 shows the use of generic plus non-generic features of a part body. The formal data types and Sin
and Cos operations are generic and, hence, tailorable. The multiplication operator is also generic. The sub-
traction and addition operations are not generic. Of course, the sequence of operations to calculate the output
velocities is also non-generic.

procedure Compute_ Earth_Relative Horizontal_Velocities

(Nominal East Velocity : in Velocities;
Nominal North Velocity : in Velocities;
Wander Angle : in Angles;
East_Velocity : out Velocities;
North Velocity : out Velocities) is

Sin_W_A : Sin_Cos_Ratio;
Cos_W_A : Sin Cos_Ratio;

bagin

Sin W_A := Sin (Current_Wander_ Angle);
Cos_W_A := Cos (Current_Wander Angle);

East_Velocity := Nominal East_Velocity * Cos_W A -
Nominal_ North_Velocity * Sin_W_A;

North_Velocity := Nominal North Velocity * Cos W A +
Nominal East_Velocity * Sin W_A;

end Compute_Earth Relative Horizontal Velocities;

Figure 5-5: Commonality Captured in the Generic Part Body

5.4 Interaction Between Parts

An important aspect of the CAMP design approach is that parts can be designed to build on other parts, work
together, and facilitate use of other parts. Figure 5-6 shows how these relationships come into play when
developing a small portion of a north-pointing navigation system (Compute_Coriolis_Acceleration,
Radius_of_Curvature, and Latitude_Integration). In order to instantiate these parts for use in the navigation
system, the following must occur:

1. Ten packages must be compiled into the user's library. The user himself requires six of these
{indicated by the arrows going into the user application). These six require an additional four.

2. Before instantiating the navigation parts the user must do the following:

o Instantiate four versions of the square root package (GPMath.Square_Root) using data
types and operators supplied by the basic data types (BDT) package.

« Instantiate four versions of the vector operations package (CVMA .Vector_Opns) using
data types and operators supplied by BDT and the square root functions contained in the
packages previously instantiated by the user.

e Instantiate a cross product function using scalar data types and operations supplied by
BDT, along with vector data types and operations obtained from three separate instan-
tiations of CVMA .Vector_Opns.

47

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

3. The three navigation parts can then be instantiated using:
o Scalar data types and operators supplied by BDT.

¢ Scalar data types and trigonometric functions supplied by an instantiation of the standard
trig package contained in BDT (BDT.Trig).

¢ Vector types and operations supplied by the four instantiations of CVMA Vector_Opns.

¢ Data constants supplied by the WGS72 ellipsoid metric data package (WGS72) and the
WGS72 ellipsoid unitless data package (WGS72U).

¢ User-defined data types and objects.

-y
iy .y iy -
\ iny
Poly GPMath StdTrig UnivConst
‘ ConvFactors
it was72u
TN BOT WGST2
CVMA
- s oy
v g '] ‘
NPNav USER APPLICATION PROGRAM

pkg VelSqRt is new GPMath.Square_Root ...
pkg AngVelSqRt is new GPMath.Square_Root ...
pkg AccelSqRt is new GPMath.Square_Root ...
pkg DistSqRt is new GpMath.Square_Root ...

pkg VelVOpns is new CVMA.Vector_Opns ...
pkg AngVelVopns is new CVMA Vector_Opns ...
pkg AccelVOpns Is new CVMA Vector_Opns ...
pkg DistVOpns Is new CVMA.Vector_Opns ...

fn CrossProd_AVV_VV is new CVMA.Cross_Product ...

fn CorAccel is new NPNav.Compute_Ccriolis_Acceleration
pkg RadOfCurv Is new NPNav.Radius_of Curvature ...
pkg Latint is new NPNav.Latitude_(ntegration ...

Figure 5-6: Assembling a North-Pointing Navigation System

5.4.1 Parts Build on Other Parts

Software parts should be designed to facilitate the composition of more complex parts from simpler parts. For
example, consider the CAMP Polynomials, Standard_Trig, and Basic_Data_Types parts illustrated in Figure
5-7. The Polynomials art lies at the bottom of the build and provides an extensive set of polynomial solutions
to various transcendental functions. The generic unit Standard_Trig forms the second layer by exporting
trigonometric data types and operations. Standard_Trig uses the Polynomials package to obtain the required
puiynomial solutions to its exported transcendental functions. The Basic_Data_Types part provides the final
layer. In addition to providing a set of data types and operatio. .. typical of a navigation implementation, Basic_
Data_Types instantiates the Standard_Trig package. In this example, a user need only import Basic_Data_

48

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

Types in order to obtain a full set of navigation data types (such as various forms of distances, velocities,
accelerations, etc.), operators upon these types, trigonometric data types (such as radians, degrees, etc.), and a
full set of trigonometric functions.

This design approach offers several advantages, and is an important feature of the CAMP design methodology.
Some of the characteristics of this approach include the following:
¢ Minimal functionality is added from one step to the next.
e Users of the higher level packages, such as Basic_Data_Types, frequently will not need to refer-
ence the lower level packages, such as Polynomials.
¢ Combining the parts saves work for the user.
It is one means of providing flexibility — the user can replace CAMP parts at any level with his own versions.

mstantiated

Polynomials Standard_Trig Basic_Data_Types
System_Functions Radians) [Meters)
P e yoin_Cos_Ratio Meters_per Second)
N \Tan_Ras) ansarng | 580000
Si 3
" Degrees) A -
Cos Sin calls RadOpns
\ A : “/" :
m/

USER
APPLICATION

s indicates a generic unit

Figure 5-7: Some Parts Build on Other Parts

5.4.2 Parts Work Together

Parts can also be designed to work together, using low-level parts to support more complex operations. This
design approach differs from the approach previously discussed in that functionality is added with each step and
the lower parts are frequently required directly by the user. For example, consider the Geometric_Operations
and Waypoint_Steering parts shown in Figure 5-8. The Waypoint_Steering part exports the Steering Vector_
Operations package which handles the initialization and updating of waypoint steering vectors. In order to
perform its operations, the Steering_Vector_Operations package instantiates two subprograms from the
Geometric_Operations package which are designed to calculate unit radial vectors, unit normal vectors, and
course segments. This design methodology has several benefits:

19

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

» Because the lower level parts are not placed in the body of the higher level package, they are also
available to the user. In this case, the geometric operations are not put in the bedy of the
Waypoint_Steering package, so they can be used for other applications as well.

¢ Maintainability is improved because the code for the lower level part {in this case Geometric_
Operations) is not duplicated within the higher level part (in this case the Waypoint_Steering
package).

o The parts are easier to use because the instantiations of the lower level parts (e.g., Geometric_
Operations) are performed within the higher level parts (e.g., Steering Vector_Operations
LLCSC) instead of bringing them in as generic subroutines. This saves the user the effort of
locating and instantiating additional parts.

ity X4 iy

General_Purpose_Math aOOfd"ZfO.bVGCW_ Geometric_Operations Waypoint_Steering
atrix_Algebra - -
\\\‘\ﬂ\o\t\)‘%\l}h\\x §\\\\\\\.\\\\g\\\\\\\\\\\\\\\\~w & \va\??\n\;\a};& N
{ of Squares § Vector_Operations * Vecio Nk Sto0ring_Vector_
SN /grairidted b UL O N Operations
SRR ey A & Sy,
ILIARIE D o g - \D initialize
Y and_Unlt_NormaI_\\/"mm"

@\ Ve Yector \D :Update:

‘) reat_Circle_Arc_Length
‘\\\\\h\\\\\\\\\\\\\\ \ \D
N Cross_Pmduc;\\ ™

§ ~T] Compute
‘\\\\\\‘\\\\\\\\\\\\\\\“\\ \
nsRentated

\

LYATILIIS LIS L1012 007
» o
*. l @ l
fLILILY,

‘ e

Basic_Data_Types

USER APPLICATION

«w Indicates & generic unit

Figure 5-8: Parts Work Together

5.4.3 Parts Facilitate Use of Other Parts

Parts can be designed to facilitate the use of other parts by providing the requisite generic actual parameters.
For example, consider Figure 5-9. In order to instantiate the generic Compute_Segment_and_Unit_Normal_
Vector procedure, the user need only define a discrete type for Indices. The remaining scalar types can be
obtained from the Basic_Data_Types package, along with the multiplication and division operators; the vector
type and operations on that type (i.e., Vector_Length and Cross_Product) can be obtained by instantiating the
Vector_Operations package in the Coordinate_Vector_Matrix_Algebra CSC; and a value for the radius of the
Earth can be found in the WGS72_Ellipsoid_Engineering Data CSC. This kind of support can be found in
most of the CAMP parts, and is an example of how the ease of use goal can be met. Parts developers should
anticipate the need for supporting parts and provide them in the parts set.

50

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

it \
e Y et GEOMETRIC_OPERATIONS
/ AU
A== I
N
\ BASIC_DATA_TYPES | Earth Distances)
_. Tig - -
ot o~
COORDINATE_VECTOR i
MATRI_ALGEBRA RN
Vector_Op or_Len;
Vector)
'——-\L\ﬂL"' Crose_Product
st aaaaa
T~ Mmtantiated . Compute_Segment_and_
-ty : / Unit_Normal_Vector
/ Instantia
wasT? . '
METRIC_DATA

Figure 5-9: Parts Facilitate Use of Other Parts

5.5 Design Considerations

A primary consideration in the design approach presented here was how to provide low-level operations, such
as linear algebra and transcendental functions, to more complex routines. There were several options:

* In-line the required operations directly into the higher level routine: This option was rejected
because it would cause the parts to become excessively large. Also, in-lining would increase
testing time, and has the potential for creating a maintenance nightmare.

» Place the required code in subroutines located in package bodies: This option, while an improve-
ment over in-lining, would also increase the size of the parts, lengthen testing time, and increase
maintenance difficulties.

« Instantiate a required operation from another part: In a few cases this option may be desirable.
This method may be desirable if: (1) only one method exists for implementing the required
operation; or (2) the instantiating part is a very high-level part, such as a Kalman filter update
package, designed to provide one possible solution to a problem by bringing together one pos-
sible combination of 'ower level parts. It is also acceptable if the required operation is a very basic
one, such as a trigonometric function, and it is not possible to know ahead of time which algo-
rithm will provide optimal performance.

¢ Bring the required operations in via generic parameters: This option is the one of choice in the
vast majority of cases.

The use of generic formal subprograms to import required operations is an important design feature. It has the
advantage of providing great flexibility to the user by allowing parts to be developed to supply low level opera-
tions or allowing the user to define his own, as shown in the following examples.
e Example I: _
In this example, assume the user wants to instantiate both of the parts contained in the
Geometric_Operations CSC shown in Figure 5-10. Each part requires a sine/cosine procedure
as a generic parameter. If the user has imported the Basic_Data_Types (BDT) package, he al-

ready has access to the sine/cosine procedure provided indirectly by BDT's instantiation of
Standard_Trig (Trig). If this procedure is satisfactory, he does not need to specify it in his instan-

51

—_—

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

tiation since the BDT version will be selected by default. If, however, the user’s calculations re-
quire more accuracy or speed, he may construct a different sine/cosine procedure by building one
from the over 25 sine functions provided by the Polynomials CSC or by writing his own. This
new sine/cosine procedure may then be used in one of the following ways:

- If he wants to use this new procedure throughout his application for all sine/cosine calcula-
tions, the procedure can be specified in such a way as to hide the sine function contained
in BDT.Trig. He can let the generic actual subroutines default to this new procedure. This
is illustrated in Figure 5-11.

- If the newly created sine/cosine procedure is to be used only for certain calculations, it can
be designed in such a way as to not hide the one contained in BDT.Trig. In this case, the
special procedure would have to be explicitly specified in instantiations where it was to be
used. Using this method, it is possible for the user to create multiple sine/cosine
procedures — a fast one, a highly accurate one, and a general purpose one — to meet his
needs. This is illustrated in Figure 5-12,

o Example II:

If the user wants to construct a Kalman filter that incorporates a complicated-H matrix, he can
use the Kalman_Filter_Data_Types package and all the data types it provides, and all generic
formal subroutines required by instantiations of any of the parts contained in the Kalman_Filter_
Common_Parts and Kalman_Filter_Complicated_H_Part CSCs will properly default. If however,
he wants to reduce storage by not using full storage matrices, he can define his own data types
and operations, and still use the Kalman filter parts without making any modifications to the parts
themselves.

52

-

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

generic
type Angle is digits <>;
type Trig Ratio is digits <>;
package Standard_Trig is

type Radians is new Angle;
type Sin_Cos_Ratic is new Trig_Ratio range -1.0..1.0;

procedure Sin_Cos (Input :in Radians:
Sin_Result out Sin_Cos_Ratio:
Cos_Result

end Standard_Trig:

with SYSTEM;
with Standard_Trig;
package Basic_Data_Types is

type Real is digits SYSTEM MAX_DIGITS;
type Meters is digits SYSTEM.MAX_DIGITS;

package Trig is new Standard_Trig
(Angle => Real,
Trig_Ratio => Real);

type Earth_Position_Radians is new Trig.Radians:
function ™" (Left : Meters;
Right : Trig.Sin_Cos_Ratio}

return Meters;

end Basic_Data_Types:

out Sin_Cos_Ratio);

package Geometric_Operations is

generic
type Indices is (<>);
type Earth_Positions is digits <>;
type Sin_Cos_Ratio is digits <>;
type Unit_Vectors is array {Indices)
of Sin_Cos_Ratio;

X : in Indices := |ndices’FIRST;
Y : in Indices = indices'SUCC(X):
2 : in Indices := Indices’LAST:

with procedure Sin_Cos

(Input :in Earth_Positions;
Sine : out Sin_Cos_Ratio;
Cosine : out Sin_Cos_Ratio}
Is <>;

function Unit_Radial_Vector
(Lat_of_Point : Earth_Positions;
Long_of Point : Earth_Positions)
return Unit_Vectors;

generic
type Earth_Distances is digits <>;
type Earth_Positions is digits <>;

type Segment_Distances is digits <>:
type Sin_Cos_Ratio is digits <>;
Earth_Radius : in Earth_Distances;
with function "*" (Left : Earth_Distances:

Right : Sin_Cos_Ratio)

return Segment_Distances is <>;
with function Sqrt (Input : Sin_Cos_Ratio)

return Sin_Cos_Ratio is <>;

with procedure Sin_Cos

(Input :in Earth_Positions;
Sine : out Sin_Cos_Ratio;
Cosine out Sin_Cos_Ratio)
is <>;
package Great_Circle_Arc_Length is
function Compute
(Latitude_A : Earth_Positions:
Latitude_B : Earth_Positions:

Longitude_A : Earth_Positions;
Longitude_B : Earth_Positions)
return Segment_Distances:

end Great_Circle_Arc_Length;

end Geometric_Operations;

Figure 5-10: Required Operations Obtained Through Use of Generic Formal Parameters

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

with Basic_Data_Types:

with Geometric_Operations;

with WGS72_Elipsoid_Metric_Data;
procedure User_Application is

begin

end User_Application;

use Basic_Data_Types;

package BDT renames Basic_Data_Types:
package GEO renames Geometric_Operations;
package WGS72 renames WGS72_Ellipsoid_Metric_Data;

type Indices is (X, Y, Z);
type Unit_Vectors is array (Indices) of BDT.Trig.Sin_Cos_Ratio;

function Sqrt (Input : BDT.Trig.Sin_Cos_Ratio)
return BDT.Trig.Sin_Cos_Ratio;

—new Sin_Cos procedure to override that provided by BDT. Trig

procedure Sin_Cos {Input :in BDT.Earth_Position_Radians;
Sine : out BDT.Trg.Sin_Cos_Ratio;
Cosine: out BDT.Trig.Sin_Cos_Ratlo);

function U_Radial_Vector is new GEO.Unit_Radial_Vector
(Indices => [ndices,
Earth_Positions => BDT.Earth_Position_Radians,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio,
Unit_Vectors => Unit_Vectors);

=Sin_Cos defaults to new Sin_Cos procedure

package Great_Circle_Arc_Len is new GEO.Great_Circle_Arc_Length
(Earth_Distances => BDT Meters,
Earth_Positions => BDT Earth_Position_Radians,
Segment_Distances => BDT.Meters,
Earth_Radius => WGS72 Earth_Equatorial_Radius,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio);
-Sin_Cos defaults to new Sin_Cos procedure

Figure 5-11: Sample Instantiations of Geometric_Operations Parts Using Default Routines

54

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

with Basic_Data_Types;
with Geometric_Operations;
with WGS72_Ellipsoid_Metric_Data;
procedure User_Application is
use Basic_Data_Types;

package BDT renames Basic_Data_Types;
package GEO renames Geometric_Operations;
package WGS72 renames WGS72_Ellipsoid_Metric_Data:

type Indices is (X, Y, 2):
type Unit_Vectors is array (Indices) of BDT.Trig.Sin_Cos_Ratio;

function Sqrt (Input : BDT. Trig.Sin_Cos_Ratio)
return BDT . Trig.Sin_Cos_Ratio;

- —additional Sin_Cos procedure

Sine : out BDT.Trig.Sin_Cos_Ratio;
Cosine: out BDT.Trig.Sin_Cos_Ratio);

function U_Radial_Vector is new GEO.Unit_Radial_Vector

~ =Sin_Cos defaults to BDT. Trig.Sin_Cos
begin

end User_Application;

procedure Fast_Sin_Cos (Input : in BDT.Earth_Position_Radians;

(Indices => Indices,

Earth_Positions => BDT.Earth_Position_Radians,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio,
Unit_Vectors => Unit_Vectors,

Sin_Cos => Fast_Sin_Cos);
package Great_Circle_Arc_Len is new GEO.Great_Circle_Arc_Length
(Earth_Distances => BDT Meters,
Earth_Positions => BDT Earth_Position_Radians,
Segment_Distances => BDT.Maeters,
Earth_Radius => WGS72 Earth_Equatorial_Radius,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio);

Figure 5-12: Sample Instantiations of Geometric_Operations Parts Using Specialized Sin_Cos Procedure

55

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

5.6 Design Guidelines

The following paragraphs contain guidelines which should be considered when developing reusable Ada com-
ponents. All of these guidelines arise from the fact that reusable parts must be tailorable and flexible, and that it
is impossible for the parts developer to anticipate all future uses of the parts. All design and implementation
decisions should address the questions, "What might the user want to do with this part?" and "What would be
legitimate and safe for him to do with the part?".

The guidelines address how various design decisions can positively and negatively impact the user. For ex-
ample, one of the guidelines shows how decisions regarding strength of data typing can affect the effort re-
quired to integrate a part with the user's application. Some guidelines are given for recognizing areas ap-
propriate for project-specific reusable parts, and some suggestions are offered to make it easier for the user to
incorporate the reusable code into his application.

Guideline #1: Reusable parts should be designed to support, but not force,
strong data typing.

One of the benefits of Ada is its strong data typing facility. Strong data typing allows many errors to be caught
during compulation rather than during testing or execution. Reusable parts should be designed to permit and
promote strong data typing, but they should also be designed to allow the user to make the final decision
regarding the strength of data typing.

Consider the examples in Table 5-1 which show the package specifications for four implementations of a
trigonometric package. The first two examples in this table, TrigOpnsla and TrigOpns1b, show a weakly data
typed package using the same data type for both input and output values. TrigOpns1b is an improvement over
TrigOpnsla because it allows the user to define the data type being used. The use of either of these packages
in a strongly typed application would require the user to either perform type conversions with each call or write
an interface package that performs these conversions for him. The last two examples in Table 5-1,
TrigOpns2a and TrigOpns2b, contain strongly typed packages. TrigOpns2a not only allows strong typing, but
attempts to force strong data typing on the user by defining the data types in the package specification. This
forces the user to either use these data types, perform type conversions with every call, or write an interface
package. TrigOpns2b has the advantage that it allows the user to determine the strength of the data typing
because all of the data types are imported. A more detailed discussion of these implementations can be found
in the case study in Paragraph 5.7 2.

56

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

Table 5-1: Data Typing Comparisons

CODE EXAMPLE COMMENTS
Weak data typing that gives no control to the user: User has no i‘l’;m over the d&a\t: t;xesda
in this package because
ackage TrigOpnsla is . . .

b --2xpoctl inputs in unita of radians predefm?d data type FLOAT is used. If
function Sin (Angle : FLOAT) return FLOAT; the user's application does not use the
function Cos (Angle : FLOAT) return FLOAT; data type ‘FLOAT", he will be forced to
function Tan (Angle : FLOAT) return FLOAT; perform type conversions with each call

end TrigOpnsla; or write an interface package to go be-

tween his code and this package.

Weak data typing that allows user to define digits of precision: User now }fms cogtrol over the digits of

eneric precision of the data type used by this

g type Values is digits <>; package, but inputs and outputs are still

package Trigopnslb is of the same type. [f the user's applica-

-- —-expects inputs in units of radians tion employs stronger data typing, he will
function Sin (Angle : Values) return Values; be forced to perform type conversions
function Cos (Angle : Values) return Values; with each call or write an interface pack-
function Tan (Angle : Values) return Values; age to go between his code and this

end TrigOpnslb; package.

Strong data typing that is forced on the user: User now has control over the digits of

generic precision, and the inputs and' outputs are
type Input Values is digits <>; of different data types. He is, however,
type Output Values is digits <>; forced to use not only strong data typing,

package TrigOpns2a is but also the data types defined by this
type Radians is new Input Values; package. If he doesn't, he will have to
type Degrees is new Input Values; perform type conversions with each call
type SC Ratios 1is new Output Values; or write an interface package to go be-

type T_Ratios is new Output Values;

function Sin (Angle : Radians} return SC Ratios;
function Cos (Angle : Radians) return SC Ratioas;
function Tan (Angle : Radians) return T Ratios;
function sin (Angle : Degrees) return ST Ratioa;
function Cos (Angle : Degrees) return SC Ratios;
function Tan (Angle : Degrees) return T Ratios;

end TrigOpns2a;

tween his code and this package.

Facilitates strong data typing, but allows user to decide how strong: | User now has control over the digits of

generic Elrecision and the strength of data typing.
type Radians is digits <>; le can use strong typing by specifying a
type Degrees is digits <>; different data type for each of the generic
type SC_Ratios is digits <>; formal parameters. Altematively, he can
type T_Ratios is digits <>; use weak data by specifying the

package Tri ne2b is same data type for ians, _Ratios,
gunction Sin (Angle : Radians) return SC_Ratios; and T_Ratios if his application required
unction Coa (Angle : Radiana) return SC Ratios; P : yae
function Tan (Angle : Radians) return T Ratios; :‘;n?d:talacmosr cge;:e;pegéy lagaﬁ:‘:
function Sin (Angle : Degrees) return ST Ratios; and T Ratios if his a plk:aﬁon re uireci
function Cos (Angle : Degrees) return SC Ratios; - caleulati P! adian q and
function Tan (Angle : Degrees) return T_Ratios; degree ulations. (R S

Degrees require separate data types to

d TrigOpns2b;
ené Trigtp disambiguate the overloaded functions.)

When considering data typing in the design of reusable Ada components, the question arises, "How strong is
strong enough?”. At a minimum, parts should be designed to support different units of measure, e.g., separate
data types should be provided for distances, velocities, accelerations, sine/cosine ratios, pressure, etc. Consider
the example shown in Figure 5-13 which contains the specification for a generic function to compute the
distance to the current waypoint. It imports 4 data types, 1 object, and 2 subprograms via its generic formal
parameters.

57

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

———

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

generic
type

type Diatances
Earth Radius

with function

Anawer
begin
Dot_Prod_Result

Unit Vectors
type Sin Tos Ratio

with Tunction Dot_Product (Left

function Distance to Current Wa

function Distance to Current Wa

"*x" (Left : Sin Cos_Ratio;
Right : Distances)
return Diatances is <>;
oint
(Unit"Radial M 7 Unit_Vectors;
Unit"Tangent B : Unit Vectors) return Distances;
oint
(Unit"Radial M 7 Unit_Vectors;
Unit Tangent B : Unit Vectora) return Distances is
Sin Tos Ratio}

Dot_Prod_Result :

is private;

is digits <>;

is digits <>;

: in Distances;

: Unit Vectors;
Right : Unit™Vectors)
return Sin Cos Ratio is <>;

: pistances;

Unit Radial M,

;= Dot Product (Left =>
- Unit_Tangent_B);

Right =>

Answer := Dot Prod Result * Earth Radius;
end Distance_to Turrent_Waypoint;

Figure 5-13: Distance_to_Current_Waypoint Function (Version 1)

While it may not be obvious from looking

at this specification, it makes an assumption regarding data typing —

it assumes that the precisions for all objects of a particular unit of measure are the same. In particular, it
assumes that the distance returned by the function is of the same data type as the distance used to define the
radius of the Earth. This assumption is not always true and can be removed. A revised specification is shown in

Figure 5-14.

generic
type
type
type
type]
Earth Radius

Unit Vectors
8in Tos Ratio

with function "*"

Earth_DIstances
Segmenit Distances is digits <>;

with Tunction Dot_Produét (Left

function Distance_to_Current_ Waypoiit
(Unit "Radial M
Unit_Tangent B :

is private;
is digits <>;
is digits <>;

in Earth Distances;

T Unit_Vectors;
Right unit Vectors)
return Sin_Co3_Ratio is <>;

(Left : Sin Cos Ratio;

Right : Earth_DIstances)

return Segment Distances ia <>;

T Unit Vectors;
Unit_Vectors) return Segment_Distances;

Figure 5-14: Distance_to_Current_Waypoint Function (Version 2)

It is necessary to decide just how flexible a part should be with respect o data typing. Table 5-2 shows various
generic specifications for a simple dot product function. The complexity of the specifications range from a very
simple version which assumes that the input and output data types are the same, to the most complex one
which allows input, output, and intermediate values to be of different data types. As can be seen from these
and earlier examples, the complexity of developing and using the code increases as the number of assumptions

decreases.

58

FOUNDATIONS of SOFTWARE REUSE

for I in Indicea loop
Answer := Left (I) * R
end loop;
return Answer;
end Dot_Product;

ight (I) + Anaswer;

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN
Table 5-2: Various Degrees of Data Typing
CODE EXAMPLE COMMENTS
Weak data typing: This shows a very basic dot product func-
genaric tion. It assumes the dﬂ:t: typa:r{db?hdw
; the input vectors are same e
,‘;& ?},;x::. i: ‘?i’i,‘f' < data type of the return value is the same
tyfo Vectors 1ia array (Indices) of Elements; as the vector elements.
function Dot Product
Treft : Vectors;
Right : Vectors) return Elements;
function Dot Product
Left : Vectors;
Right : Vectors) return Elements is
Anawer : Elements :w= 0.0;
begin

Mild data typing:
generic
type Input Elements 1is
type Output Elements is
type Indiced is (<>);
type Vectors is array (
with function "*" (Left
Right
return
function Dot Product (Left
- Right
return

digits <>;
digits <>;

Indicea) of Input_Elements;
Input Elements;
Input Elements)
output Elements is <>;
: Vectors;
: Vectors)
Output_Elements;

This function no lon
input and output values have the same
data type. It , however, continue to
assume that the input vectors are of the
same data type.

r assumes that the

Strong data typing:

generic
type
type
type
type
type
type

type
with

is
is
is
is
is
is

Left Elements
Right Elements
Output Elements
Left Indices
Right Indices
Left Vectors

Right Vectors is

"ot (Left
Right
return
function Dot Product (Left
- Right
return

function

digits <>;
digits <>;
digits <>;
(<>);
(<>);
array (Left Indices)
of Left Flements;
array (Right Indices)
of Right Elements;
Left Elements;
: Right Elements)
output Elements is <>;
Left Vectors;
: Right Vectors)
output_Elements;

This function no longer assumes that all
the vectors are of the same data type. It
does, however, assume that the inter-
mediate values are of the same data type
as the output value.

Stronger data typing:

generic
type
type
type
type
type
type
type

type
with

Left Elements
Right Elements
Intermediate Values
Output Elements
Left Indices
Right Indices
Left Vectors
Right_Vectors
function "*" (Left
Right
return
(Left
Right
return
{Left
Right
return

with function "+"

function Dot Product

digits <>;
digits <>;
digits <>;
digits <>;
(<>);
(<>);
ar:a¥ {Left Indices)
of Left Elements;
array (Right Indices)
of Right Elements;
: Left Elements;
: R: JhE Elements)
Intermediate Values is <>;
Intermediate Values;
Intermediate Values)
Output Element® is <>;
: Left Vectors;
: Right Vectors)
output_Elements;

This function no longer assumes that the
intermediate values are of the same data
type as the output value. It does,
however, assume that all the intermediate
values are of the same data type. With-
out knowing the size of the vectors ahead
of time, it would not be possible to
provide separate intermediate data types.

59

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVEI OPING and USING ADA PARTS in RTE APPLICATIONS

Table 5-2 shoukd not be taken as a recommendation to always provide maximum flexibility, but rather to con-
sider the amount of flexibility required in a part. At a minimum, a part should provide different data types for
each unit of measure used by the subroutine. If the units of measure of intermediate types are different from
the input and output types, they should also be provided so that the generic formal subroutines can more
closely reflect those being used by the application developer. For example, if inputs are in units of accelerations
and time, outputs are in units of distances, and intermediate values are in units of velocities, data types and
operators should be imported to reflect the actual operation of the function in order to give the greatest amount
of control to the user, even if this means importing data types not required for the input and output types.

Guideline #2: Bundling can facilitate locating and retrieving parts, but the
bundling scheme should be chosen carefully.

Parts bundling is the process of placing multiple, related code parts in the same package. For example, the
CAMP parts set includes a Wander_Azimuth_Navigation package that contains all operations specific to wander
azimuth navigation, a North_Point_Navigation package that contains all operations specific to north pointing
navigation, a Common_Navigation package that contains all operations which are common to north pointing
and wander azimuth navigation, a Geometric_Operations package that provides the geometric calculations re-
quired for guidance, a Clock_Handler package which contains the operations required to maintain a system
clock, etc. Bundling aids the user in locating relevant parts: by placing all parts dealing with a specific area in a
single package, the user simply has to locate the single package dealing with the area of interest and he is
assured that either the part he is looking for is in that package or it doesn't exist in that parts set.

Parts may be bundled according to types or classes of operations or objects. For the purposes of this discus-
sion, a type is considered more restrictive than a class. For example, types of operations would include north-
pointing navigation, wander azimuth navigation, and common navigation operations; the class of operations for
this example would be navigation. Examples of types of objects would be stacks, queues, and buffers; the
corresponding class of objects would be abstract data structures. Bundles do not necessarily consist of
homogeneous types of parts; e.g., they can consist of a high-level type of operation, such as navigation or
Kalman filtering, and all of the supporting parts needed to use that operation.

Figures 5-15 and 5-16 show a set of operations on abstract data structures packaged according to each of
these bundling schemes. The first packaging structure, shown in Figure 5-15, has bundled the operations by
class — the class being abstract data structures. This bundling scheme results in the creation of a single top-level
package which exports six separate subpackages. Each of these subpackages defines a different type of object
(i.e., stacks, queues, etc.) and operations on that object. Figure 5-16 shows the same set of operations bundled
according to object type rather than object class. The result is six separate packages, each of which defines its
own object type and operations on that type.

Table 5-3 summarizes the advantages and disadvantages of bundling by class and type.

60

X

FOUNDATIONS of SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN
ABSTRACT _DATA_STRUCTURES
o Bounded_FIFO_Buffer o Nonblocking_Circular_Buffer + Bounded_Stack
« Clear_Buffer « Clear_Buffer * Clear_Stack
+ Add_Element » Add_Element * Add_Element
* Retrieve_Element * Retrieve_Element + Retrieve_Element
* Peek * Peek * Peek
* Buffer_Status » Buffer_Status * Stack_Status
* Buffer_Length * Buffer_Length * Stack_Length
¢ Unbounded_FIFO_Buffer ¢ Unbounded_Priority_Queue ¢ Unbounded_Stack
* Initialize_Buffer * Initialize « Initialize
* Clear_Buffer * Clear_Queue * Clear_Stack
* Free_Memory * Free_Memory *» Free_Memory
*» Add_Element + Add_Element * Add_Element
* Retrieve_Element * Retrieve_Element * Retrieve_Element
* Peek * Peek * Peek
* Buffer_Status * Queue_Status *» Stack_Status
» Buffer_Length *» Queue_Length » Stack_Length

Figure 5-15: Abstract Data Structures Hierarchy

BOUNDED_FIFO_BUFFER NONBLOCKING_CIRCULAR_BUFFER
o Clear_Buffer o Clear_Buffer

o Add_Element ¢ Add_Element

o Retrieve_Element ¢ Retrieve_Element

¢ Peek o Peek

o Buffer_Status o Buffer_Status

¢ Buffer_Length o Buffer_Length
UNBOUNDED_FIFO_BUFFER UNBOUNDED_PRIORITY_QUEUE
¢ Initialize_Buffer o Initialize

o Clear_Buffer ¢ Clear_Queue

¢ Free_Memory ® Free_Memory

o Ada_Element o Add_Element

¢ Retrieve_Element o Retrieve_Element

o Peek o Peek

» Buffer_Status © Queue_Status

o Buffer_Length * Queue_Length

BOUNDED_STACK
o Clear_Stack

¢ Add_Element

¢ Retrieve_Element
® Peek

¢ Stack_Status

o Stack_Length

UNBOUNDED_STACK
o Initialize

o Clear_Stack

¢ Free_Memory

¢ Add_Element

¢ Retrieve_Element

o Peek

o Stack_Status

o Stack_Length

Figure 5-16: Alternate Abstract Data Structures Hierarchy

61

FOUNDATIONS of SOFTWARE REUSE

ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS
Table 5-3: Bundling by Type versus Class
AREA AFFECTED BUNDLING BY CLASS BUNDLING BY TYPE
Maintainability Minimizes the number of packages since all the | Increases the number of packages since a separate

operations dealing with a class of objects will be
aced in the same package. For example, a single
abstract data structures package would contain mul-
tiple subpackages each dealing with a single type of
al data structure {e.g., bounded stack, un-
bounded stack, bounded queue, unbounded queue).

package is created for each type of object.

PWs can become very large. For example, the
C General_Vector_Matrix_Algebra package
specification is 11,812 lines long, includin
headers, comments, blank lines, and 1135 lines o
code. This makes the packages more difficult to
maintain.

Since the operations are split among multiple
packages, the individual kages which must be
maintained are smaller than those created when
parts are bundled by class. Consequently, main-
tenance of individual kages or subroutines is
easier, decreasing the likelihood of introducing an
error during maintenance.

Minimizes the number of files to be maintained be-
cause the number of packages is minimized.

Increases the number of packages and files to main-
tain because multiple pacmes are created.

Compilation

Minimizes the number of packages which must be
compiled into the Ada library.

Increases the number of packages which must be
compiled into the Ada library.

If an application needs to use any of the subrcutines
in the package, all of the subroutines in all of the
subpackages must be compiled. For example, if an
application requires unbounded stack operations,
the code implementing the unbounded stack must
be compiled along with the code implementing all
the other abstract data structures defined by the
package

The user must compile only those packages which
he requires for his application since they are no
lol;\ger packaged with all the other operations in the
class.

If a subroutine’s specification is modified or if a new
subroutine or package is added, the resultant
recompilation of the specification means that all the
bodies for all the subpackages and subroutines also
have to be rczcompile£a

Compilation time following r-vision of a part's
specitication is decreased. Sinci the operations for
the different object types are in ssparate packages,
a revision to a function specification af&cts only
one package specification and, consequently, far
fewer subroutines. This decreases the number of
units requiring recompilation. The addition of a
package would not affect any of the existing
packages if it is designed as a separate package.

Usability

The user needs to look at only one package in
order to locate a function.

By splitting the operations among multipie
packages, the user can no longer look at only one
nackage in an attempt to locate a function.
owever, when looking at one of the individual
packages, it may be much easier for the user to
determine whether or not the function is there.

A large package may be more difficult to under-
stand.

By splitting the operations among muitiple, smaller
packages, each individual package is easier to un-
derstand since it can be looked at in isolation.

When deciding how to package a set of objects or operations, the advantages and disadvantages of each of the
bundling schemes need to be evaluated in light of the needs of the intended users. The primary advantage of
bundling by type is that the resulting packages are smaller, making them easier to develop, maintain, and
understand. The primary advantage of bundling by class is that it minimizes the search space for candidate
software parts. This was the primary consideration when developing the CAMP parts, so parts were frequently
bundled by class. This may not be the primary consideration for other reuse development efforts. Additionally,
a parts catalog can alleviate some of the burden of searching through a large collection of parts.

62

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

Guideline #3-a: Avoid duplication of data types packages.

Guideline #3-b: Minimize variant proliferation. Concentrate on developing a
tailorable component and providing tailoring guidelines.

Duplicate packages and variant proliferation pose problems for both parts users and developers, and may in-
dicate that an area of tailorability had not been previously considered. Duplication increases the number of
candidate parts a user must consider, thus increasing the difficulty of selecting parts for reuse. It can also create
configuration management problems since more parts must be maintained and tracked. If an error is discovered
in one part, the existence of variants may require the corrections to be made in several places, thus increasing
the likelihood that additional errors will be introduced. There is also the possibility that not all the variant parts
will be corrected or that they may not all be corrected in the same way.

As an example of part proliferation, consider the package specifications and bodies shown in Table 5-4; they
are representative of an early design approach taken on an actual software reuse effort. As part of this effort, a
set of unit-specific data type packages was to be developed, along with multiple packages for each set of
operations implemented. The data type packages would contain the numeric types defining the units, as well
as any vector/matrix operations required — duplicate packages would be developed for metric (meters and
radians) and English (feet and degrees) units.

Several versions of each of the operation sets were implemented in an effort to increase reuse by providing
something for everyone. The metric and English packages would provide parts that users could <imply with
into their application — no instantiations would be required. The package using the Ada predefined data types
was provided for long-time FORTRAN programmers who might resist Ada’s strong data typing. The generic
package was provided for users who wanted to define their own data types rather than use those in the data
type packages that was to be developed in conjunction with the parts. Table 5-4, while not containing the
actual code developed as part of this effort, shows how this multiple package approach would have been ap-
plied to a simplistic example.

Although the goals of this approach were noble, there are a number of problems with it:

* There was too much duplication in the data types packages. Duplicate vector/matrix operations
were to be implemented for both English and metric units. At the very least, these could be
placed in a separate generic package that could be instantiated in each of the data types
packages. Additionally, many, if not all, of these operations could be be obtained from an existing
parts set. Thus, not only should duplication be avoided in parts under construction, but care
should be taken to ensure that new parts do not duplicate existing parts.

* You can’t be everything to everyone. An attempt had been made to provide a stand-alone
package that would satisfy all of the desires of all engineers — a package had been provided for
engineers who wanted to use meters and radians, another for engineers who wanted feet and
degrees, another for engineers who wanted units of feet and degrees but preferred their code to
look like FORTRAN, and a generic package for engineers who wanted units of feet and degrees
but preferred to supply their own data types. But what about engineers who wanted feet and
radians? Or the engineers who wanted to provide their own data types, but wanted units of feet
and degrees? Or the engineers who wanted to use the predefined data types with metric units?
The list could go on and on. It simply is not practical to provide a separate set of code for each
situation.

63

f——

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

¢ Development, testing, configuration management, and maintenance of duplicate/variant
packages can quickly become a nightmare. For each set of operations implemented in the ex-
ample, at least four packages were planned. The personnel and time resources needed to sup-
port this type of development increases quickly, adding significantly to the cost of parts develop-
ment,

Even given the resources needed for implementation of all of the variants, configuration manage-
ment can quickly get out of hand. In this example, the algorithms in all the packages were
identical, thus an error in the algorithm would have resulted in an error in every variant. Upon
detection of the error, all of the variants would need to undergo modification, retesting, and
rebaselining. This is an error-prone process since care needs to be taken to ensure that identical
modifications are made to each and every variant.

¢ The generic package shown in Table 5-4 was too restrictive and made too many assumptions.
Since these assumptions were not obvious from the code (i.e., the data types being brought in
were named ‘Distances’ and ‘Intervals2_per_Distance’ rather than ‘Feet’ and
‘Intervals2_per_Feet’), it would not be obviot's from looking at an instantiation of this, or similar
packages, that the use of ‘Meters' and ‘Radians’ would be incorrect.

One approach to overcoming the limitations of the approach presented in this example is to develop a single,
flexible generic package that could accommodate all the desired permutations. Careful design of this package
would allow sufficient flexibility to provide all the operations of the individual packages shown in Table 5-4. This
revised generic package is shown in Figure 5-17.

64

f

FOUNDATIONS of SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN
Table 5-4: Operations Implemented Via Multiple Packages
CODE EXAMPLE COMMENTS

with BDT;

package Metric Opna is
fugction updated (X :

end Metric_Opns;

package body Metric Opns is
function Updated

A : constant BDT.Seconds
B : constant BDT.Seconds
C : constant BDT.Meters

eTr Meter := 4.567;
Per- tm 1.456;
1= 0.123;

Answer : BDT.Meters;
begin
Answer := A*X*X + B*X + C;

return Answer;
end Updated;
end Metric Opns;

BDT.Meters_per_ Second) return BDT.Meters;

(X : BDT.Metc:szper Second) return BDT.Meters is

Implementation in metric units of meters
and radians. All required da*a types are
obtained from a separate metric data
types package. This package does not
make use of the code in any of the other
packages

with BDT;

package English Opns is
function Updated (X :

end English Opns;

package body English Opns is
function Updated
(X : BDT.Feet per Second) return BDT.Feet
A : constant BDT.Secon aZ_ﬁbr_Foot = 1.392;

B : constant BDT.Seconds = 1.456;
C : constant BDT.Feet = 0.403;
Answer : BDT.Feet;

begin
Anawer := A*X*X + B*X + C;

return Answer;
end Updated;
end English_Opns;

BDT.Feet per Second) return BDT.Feet;

is

Implementation in English units of feet
and degrees. All required data types are
obtained from a separate English data

types package. This package does not
make use of the code in any of the other

packeages

package Float Opns is
function Updated (X :
end Float_Opns;

FLOAT) return FLOAT;

package body Tloat Opns 1s
function Updated (X : FLOAT) return FLOAT is

A : constant FLOAT := 1.392;
B : constant FLOAT := 1.456;
C : constant FLOAT := 0.403;
Answer : FLOAT;

begin
Answer := A*X*X + B*X + C;

return Answer;
end Updated;
end Float_ Opns;

Implementation in English units of feet
and degrees. All objects are declared
using the predefined data types 'FLOAT
and INTEGER'.

generic
type Distances is digits <>;
type Intervals is digits <>;
type Intervals2 per Distance is digits <>;
type Velocities - ia digits <>;
function "*" (L : Intervals2 per Distance;
R : Velocities
return Intervals is <>;
function "*" (L : Seconds;

R : Velocities)
return Diatances is <>;
package Generic Opnas 1is
function Updated (X :
end Generic_Opns;

Velocities) return Distances;

package body Generic Opns is
function Updated TX : Velocities) return Distances is

Operations implermented in English units
of feet and degrees. All the data types
are obtained through generic formal
parameters.

A : constant Intervals2 per Distance := 1.392;
B : constant Intervals - = 1 456;
C : constant Distances :m 0.403;
Answer : Distances;

begin
Answer := A*X*X + B*X + C;
return Answer;

end Updated;

end Generic Opns;
65

FOUNDATIONS of SOFTWARE REUSE

ARCHITECTURAL DESIGN

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

generic
type Distances is digits <>;
type Intervals is digits <>;
type Intervals2 per Distance is digits <>;
type Velocities is digits <>;
A : in Intervals2 per Distance;
B : in Intervals;
C : in Distances;
function "*" (L : Intervals2 per Distance;
R : VclocitiesTP
returnu Intervals is <>;
function "*" (L : Seconds;
R : Velocities)
return Distances is <>;
package Unitless Generic Opns is
function Updated (X : Velocities) return Distances;
end Unitless_Generic Opns;

package body Unitless Generic Opns is
function Updated (X : Velocities) return Distances is
Answer : Distances;
begin
Answer := A*X*X + B*X + C;
return Answer;
end Updated;
end Unitless_Generic_Opns;

Figure 5-17: Updated Generic Package

Guideline #4-a: Provide pre-instantiated Ada generic parts where feasible.

Guideline #4-b: Use the Ada 'renames’ facility to rename subroutines ex-
ported by instantiated packages, making it transparent to the user’s
code that routines are being obtained from an instantiated package
rather than from a non-generic package.

When developing reusable Ada generic parts, it may be desirable to pre-instantiate some of the parts rather
than require the end-users to instantiate them. This can make the parts easier to use (the parts are immediately
usable because the user does not have to decipher what is required to perform the instantiation), and can be
accomplished by providing packages that instantiate a given generic unit. If the generic unit is a package, a set
of packages may be provided which both instantiate the generic package and rename all the exported sub-
routines. Renaming is useful because the exported subroutine names can be shortened, making them easier to
use. Using this technique, it is transparent to the application code that the routines are being obtained from an
instantiated package rather than from a non-generic package, i.e., from a package that has been with’d in.

For example, consider the generic package presented in Figure 5-17. Figure 5-18 shows how a set of
packages can be developed which instantiave the original generic package and then rename all of the exported

routines.

66

!lllIIlIIlIII--l-l--------l,

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

with BDT;
package Metric Opns is
package "natantiated Metric Opns is new Unitless_Generic_Opns

(Distance® => BDT.Meters,

Intervals => BDT.Seconds,
Intervals2_per Distance => BDT.SecondsZ_por_Meter,
Velocities - BDT.Moters_pez_Second,
A => 4.567,

B => 1.456,

(o} => 0.123);
function Updated (X : BDT.Metera per Second) return BDT.Meters
renames InstantIated Metric_Opns.Updated;
end Metric_Opns; - -

with BDT;
package English Opns is
package Instantiated English_Opns is new Unitless_Generic_Opns

(Distances => BDT.Feet,

Intervals => BDT.Seconds,
Intervals2_per Distance => BDT.SecondsZ_per Foot,
Velocities - => BDT.Feet_per Second,
A => 1.392,

B => 1.456,

c => 0.403);
function Updated (X : BDT.Feet per Second) reéurn BDT.Feet
renames Instantiated English Cpns.Updated;

end English_Opns; -

package Float Opns is
package Instantiated Float_Opns is new Unitless_Generic_Opns

(Distances > FLOAT,
Intervals => FLOAT,
Intervals2_per Distance => FLOAT,
Velocities - => FLOAT,
A => 1.392,
B => 1.456,

(o} => 0.403);
function Updated (X : FLOAT) return FLOAT
renames Instantiated Float Opns;
end Instantiated_Float_Opns; - -

Figure 5-18: Predefined Instantiations of Generic Package

Figure 5-19 shows an example of the code required to reference the ‘Updated’ function contained in the
implementation of 'Metric_Opns’ shown in Table 5-4. This is identical to the code that would be required to
access the 'Updated’ function that is renamed in and exported by the 'Metric_Opns’ package shown in Figure
5-18. Figure 5-20 shows the code that would be required if the function was not renamed.

with BDT;
with Metric Opns;
procedure USer Application is
X : BDT.Meters_per Second;
Y : BDT.Meters;
begin
Y := Metric_Opns.Updated(X);
end User Applicatior;

Figure 5-19: Use of Instantiated Package with Renaming

with BDT;
with Metric Opns;
procedure USer Application is
X : BDT.Meters_per_ Second;
Y : BDT.Meters;
begin
Y :» Metric_Opns.Instantiated Metric Opna.Updated(X);
end User_ Application; - -

Figure 5-20: Use of Instantiated Package without Renaming

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Guideline #5: Minimize duplicate application-specific code.

Development of reusable code parts can be cost-effective even within a single project, thus during application
development, portions of the application which are identified as reusable should be designed and coded for
reuse. These parts may be very application- and project-specific and may never see reuse on projects other
than the one for which they were developed, but if they are particularly complex or heavily used, the project
can still benefit from decreased testing time, increased reliability, ease of modifications, etc. These parts are
sometimes readily identified during design, or earlier, but other times, the commonality is not recognized until
detailed design or coding.

While not every segment of identical or similar code should be replaced by a generic unit, the following situa-
tions should signal that the creation of a reusable component should be considered:
» Code is identical except for the data types being operated on.

* Code is identical except for the procedure or group of procedures called at a particular point in
the algorithm.

« Significant or complicated sections of code are duplicated in multiple routines.

¢ A new routine or section ot a routine can be written by performing a global search and replace
on an existing piece of code.

While these situations seem obvious to the reader, they are not always obvious to the software developer. This
is true even if the developer has experience with reusable software. While it may be readily apparent that code
segments that deal with identical data types and operations should be developed as separate, reusable sub-
routines, it may not initially be apparent when code should be developed as a generic unit. This is because
many developers tend to shy away from the use of Ada generics, thinking them more appropriate for broader-
based reuse efforts rather than for use within a single project.

Guideline #6: Generic units should be given names that do not conflict with
their likely instantiated names.

The naming of reusable generic units can affect their ease-of-use. For example, in the CAMP parts set, names
of generic units fall into two categories:

e The first includes names of generic functions that were destined to become operators {e.g., "*".
"/ "+"). Section 12.1(4) of the Ada language reference manual (Reference [15)) specifies that
the "designator of a generic subprogram must be an identifier”; therefore, these units had to be
given English-like identifiers such as Diagonal_Full_Matrix_Addition or Matrix_Matrix_Multiply.
These functions could be given operator symbols when instantiated by the user (e.g., function "*"
is new Matrix_Matrix_Multiply).

e The second includes generic units which would continue to have English-like identifiers after in-
stantiation (e.g., Calculate_East_Velocity, Matrix_Matrix_Transpose, Cross_Product), although not
necessarily the same name as the generic unit.

Some of the generic units in the second category were inconvenient to use because during development thev
were given names that would be appropriate for use in an application rather than names that indicated that

68

FOUNDATIONS of SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

they were generic. If the end-user of the part wanted the instantiated unit to have a different name than the
generic unit, there was no inconvenience because he could write: :

function Transpose is new Matrix Matrix Tranapose ..

or

function East_Velocity is new Calculate_East Velocity ...

The inconvenience arose when the user either wanted his instantiated routine to l.ave the saimne name as the
generic unit or needed it to be the same to allow generic formal subprograms to default elsewhere. This was
because Section 8.3(5,22) of the Ada language reference manual (Reference [15]) prevented him from doing
the following because "a reference to an identifier within its own declaration is illegal™:

function Cross_Product is new Cross_Product .

Consequently, the following is required for applications which require the instantiated name to be the same as

the name of the generic unit:

function Cross Prod is new
.Cross_Product
(Axes => Navigatior. Axes,
Left Elements => Radians_pei Sec EFP,
Right Elements => Feet per Sec EFF,
Result Elements => Feet per Sec per Sec_EFP,
Left Vectors => An ar Tel Vectors,
Right Vectors => Velocity Veltors,

ResulE’_Vectors => Accelerafion_Vectorn);

function Cross Product (Left
- Rig:.c

: Angular Vel Vectors;
: Velocity Vectors)

return Acceleration_Vectors
renames Cross_Prod;

While this is not a major problem and in no way affects the functionality or usefulness of a part, it does affect
ease-of-use and user-acceptance, particularly if this has to be done frequently.

An addition to an organization's parts development standards that requires that all generic procedures and
functions, and possibly packages, be named in such a way as to indicate they are generic (e.g., Generic_Cross_
Product or Cross_Product_Template) would easily prevent this situation from occurring. This would allow the
user to select a name without being concerned about whether or not it was the same as that of the generic unit.

Guideline #7:
parts.

Compilation order should be included with composite Ada

A very useful piece of information that should be included with every reusable code component is the compila-
tion order. This will facilitate use of higher-level components because use of these components will likely
require compilation of multiple packages. Determining compilation order can be a time-consuming, trial-and-
error process, thus providing this information with a reusable part will make the part easier to use, thus
decreasing the cost of reuse.

69

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

5.7 Case Studies

In the following paragraphs two case studies are presented that illustrate the process of désigning reusable
software components for real-time embedded applications. The first case study illustrates that the development
of flexible, reusable parts is a recursive process, and that both review and actual use are vital components of the
development cycle. The CAMP part, Coordinate_Vector_Matrix_Algebra, is used as an example in this case
study. The second case study returns to the topic of data typing that was first raised in the design guidelines in
Paragraph 5.6.

5.7.1 Case Study 1: Development of the CAMP Coordinate Vector/Matrix Algebra Package

This case study follows the development of the CAMP Coordinate_Vector_Matrix_Algebra (CVMA) package
from domain analysis through maintenance. It also discusses additional enhancements which are possible. The
purpose of this case study is to show that design of reusable parts is a recursive process, and that both reviews
and actual use are integral in the parts development lifecycie.

5.7.1.1 Domain Analysis

During the CAMP domain analysis, the need for both general and specialized vector/matrix operations was
identified. The general operations would operate on vectors and matrices of various sizes as specified by the
end-users; the specialized operations would operate on 3-element vectors and 3x3 matrices. These coordinate
data structures could be used to store guidance and navigation data. The general vector/matrix operations
could also be used for this purpose, but execution speed could be maximized by designing a package that took
advantage of the fixed size of the data structure. This difference in the code is illustrated in Table 5-5.

70

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

Table 5-5: General versus Coordinate Matrix Operation

Code for general matrix addition operation that | Code for coordinate matrix addition operation that
makes no assumptions about the size of the matrix: | assumes a 3x3 matrix:

generic generic
type Rows ia (<>); type Rows ia (<>);
typo Columns ias (<>); type Columns 1is (<>);
Elements is digits <>; typo Elements is digits <>;
packago Matrix Operations is in Rows := Rows’FIRST;
type Matrices (Rows, Columns) RY : in Rows = Rows’ SUCC (RX) ;
of Elements; RZ : in Rowas = Rows’LAST;
function "+" (L : Matrices; CX : in Columns := Columns’/FIRST;
R : Matrices) CY : in Columns := Columns’SUCC(CX);
return Matrices; cz in Columns := Columne’LAS™;
end Matrix Operations; packlgo Matrix Operations is
type Matrices (Rows, Columns)
package body Matrix Operations is of Elements;
function "+" (L : Matrices; function "+" (L : Matrices;
R : Matrices) R : Matrices)
return Matrices return Matrices;
is separate; end Matrix Operations;

end Matrix Operations;
package body Matrix Operations is

separate (Matrix Oporations) function "+" (L : Matrices;
function "+" (L Matrices; R : Matrices)
R : Matrices) return Matrices
return Matrices is is separate;
Answer : Matrices; end Matrix Operations;
begin
Go_Down Rows: separate (Matrix Oporations)
Tor Row in Rows loop function "+" (L T Matrices;
Go_Across_Columna: R : Matrices)
Tor Col™in Columns loop return Matrices is
Anawer (Row,Col) := L(Row,col) + Answer : Matrices;
R(Row,Col); begin
end loop Go_Acroas_Columns; -~ ==Row 1
end loop Go Down Rows, Anawer (RX,CX) := L{RX,CX) + R(RX,CX);
end "+"; Answer (RX,CY) := L{(RX,CY) + R(RX,CY),
Anawer (RX,CZ) := L(RX,CZ) + R(RX,CZ);
-- =-~Row 2
Anawer (RY,CX) := L(RY,CX) + R(RY,CX);
Answer (RY,CY) := L(RY,CY) 4+ R(RY,CY);
Answer (RY,CZ) := L(RY,CZ) + R(RY,CZ);
-=- ~~Row 3
Answer (RZ,CX) := L(RZ,CX) + R(RZ,CX);
Answer (RZ,CY) := L(RZ,CY) + R(RZ,CY);
Answer (RZ,C2) := L(RZ,CZ) + R(RZ,CZ);

end "+";

5.7.1.2 Design

The Coordinate_Vector_Matrix_Algebra (CVMA) package was designed to satisfy the requirements for coor-
dinate operations. The following design decisions were incorporated in this package:

¢ All operations would be grouped in a single package to facilitate identification of parts by end-
users.

* The Coordinate_Vector_Matrix_Algebra package would contain two subpackages which exported
a vector and matrix type, respectively, and general operations on those data types (e.q., addition,
subtraction, set-to-zero).

¢ When possibie, the names of the subroutines and the name and order of parameters would be the
same as the corresponding routines located in the general vector/matrix algebra package. This
would have several benefits:

- It would allow the user to use either package as long as the routines he was using were
defined in both of them. This switch could be effected by changing only the instantiation
of the generic package — it would not be necessary to change the actual calls to the
subroutines since their names, along with the names and order of their parameters, would
be the same.

- It would be possible to design higher-level routines, such as those dealing with navigation
and guidance, that could accept routines from either package as their generic actual
parameters.

71

—

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

¢ The data types would not be private types. This would allow users full access to the data types, if
they required it, and is representative of the CAMP semi-abstract data type approach. It would
also allow higher-level routines which required access to the data type to obtain it without incur-
ring the overhead of a procedure call.

e The remaining operations (i.e., those not located in the subpackages which exported the data
types) would be placed in the CVYMA package and would be designed as generic units that ac-
cepted the data types exported by the matrix and vector operations packages.

Figure 5-21 contains a portion of an early version of the specification for this package. The design was
subsequently rewised to correct the unacceptable limitations in flexibility which are identified below.

o Vector Operations: The generic data types did not provide for the intermediate resuits to be of a
different data type. It also did not allow the square root of a data type to differ from the data
type. When the Vector_Length performs its operations, it must first square each component of
the input record and then take the square root of the sum of these squares. On a project employ-
ing strong data typing, a square root function would take in a squared data type (e.g., Feet_
Squared, Seconds_Squared, Meters_Squared_per_Second_Squared) and return a non-squared
data type (e.g., Feet, Seconds, Meters_per_Second). The design of the Vector_Operations pack-
age shown in Figure 5-21 did not support this.

The package was modified to include a third data type, Elements_Squared, that would be the
result of multiplying two objects of type Elements, and a multiplication operator to define that
operation.

e Cross_Product: This function incorrectly assumed that all vectors involved in a cross-product
operation were of the same data type. For example, in the CAMP 11th Missile Application, the
coriolis acceleration was calculated using the following formula:

a=Dx7?V

where: @ is the acceleration vector whose elements have units of Lz
sec

. . . adi

® is the angular velocity vector whose elements have units of o

Jec
? is the velocity vector whose elements have units of ;%

x is the cross-product operator

The design of the Cross_Product function shown in Figure 5-21 did not support this operation
because it required the data types of the elements of all the vectors to be the same. This functicn
needed to be modified to allow the vectors to contain elements of different data types.

o Matrix_Matrix_Multiply: This function assumed that all matrices involved in the operation were of
the same data type. This assumption was too restrictive, thus it was modified to allow for
matrices with different element data types.

Figure 5-22 shows the revised partial package specification for the Coordinate_Vector_Matrix_Algebra pack-
age; it incorporates all of the changes identified above.

72

FOUNDATIONS of SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

ARCHITECTURAL DESIGN

package Coordinate_Vector_ Matrix Algebra is
generic
type Axes ia (<>);
t{po Elements is digits <>;
with
package Vector Operations is

type Vectors 1is array(Axes) of Elements;

function "+" (Left : Vectors;
Right : Vectors) return Vectors;
fuvnction "-" (Left : Vectors;

Right : Vectors) return Vectors;
function Dot_Product (Vectorl : Vectors;
function Sparse Right_Z Add (Left : Vectors;
function Sparse_Right X Add (Left : Vectors;
function Sparse_Right_ XY Subtract (Left : Vectors;
function Set_to_2Zero_Vector return Vectors;
end Vector Operations;

generic

type Axes is (<>);

tipo Elements is digits <>;
package Matrix Operations is

type Matrices is array (Axes, Axes) of Elements;

function "+" (Left : Matrices;

Right : Matrices) return Matrices;
function "-" (Left : Matrices;

Right : Matrices) return Matrices;
function "+" (Matrix : Matrices;

Addend : Elements) return Matrices;
function "-" (Matrix : Matrices;

Subtrahend : Elements) return Matrices;
function Set_to_Identity Matrix return Matrices;
function Sot_;o:ZQro_ﬂatrix return Matrices;

end Matrix Operations;

generic
type Axes is (<>);
type Elements is digits <>;
type Vectors 1is array(Axes) of Left Elements;
function Cross_Product (Left : Vectors;
Right : Vectors) return Vectors;

type Axes is (<>);
type Elements is digits <>;
type Matrices is array (Axes, Axes) of Elements;
function Matrix Matrix Multiply
(MatTixl : Hatrices;
Matrix2 : Matrices) return Matrices;

end Coordinate Vector Matrix Algebra;

function Sqrt (Input : Elements) return Elements is <>;

function Vector Length (Vector : Vectors) return Elements;
Vector2 : Vectors) return Elements;

Right : Vectors) return Vectors;

Right : Vectors) return Vectors;

Right : Vectors) return Vectors;

Figure 5-21: Top-Level Design of Coordinate_Vector_Matrix_Algebra Package

(Prerelease Version)

73

'llll.IIIlIIIlIIIlIIIlIIlllllllIIIIIIIIIIIIIII-I---I

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

package Coordinate_Vector_Matrix Algebra is

generic
type Axes is (<>);
type Elements is digits <>;
t Elements_Squared is digits <>;
with function™™*" (Left : Elements;
Right Elements) return Elements Squared is <>;

with function Sqrt (Input

: Elements_Squared) return Elements is <>;
package Vector Operations is

type Vectors is array(Axes) of Elements;

function “+" (Left : Vectors;
Right : Vectors) return Vectors;
function "-" (Left : Vectors;
Right : Vectors) return Vectors;
function Vector Length (Vector : Vectors) return Elements;
function Dot_?rsduct (Vectorl : Vectors;
Vector2 : Vectors) return Elements Squared;
function Sparse Right Z Add (Left : Vectors; -
- -~ Right : Vectors) return Vectors;
function Sparse Right X _Add (Left : Vectors;
-~ Right : Vectors) return Vectors;
function Sparse Right XY Subtract (Left : Vectors;
- Right : Vectors) return Vectors;
function Set_to_Zero_Vector return Vectors;

end Vector_ Operations;

generic

type Axes is (<>);

type Elements is digits <>;
package Matrix Operations is

type Matrices is array (Axes, Axes) of Elements;

function "+" (Left Matrices;

Right Matrices) return Matrices;
function "-" (Left : Matrices;

Right : Matrices) return Matrices;
function "+" (Matrix : Matrices;

Addend : Elements) return Matrices;
function "-" (Matrix Matrices;

Subtrahend : Elements) return Matrices;
function Set to Identity Matrix return Matrices;
function Set_to”Zero_MatTix return Matrices;

end Matrix Operations;

generic

type Axes is (<>);

type Left Elements is digits <>;

type Right Elements is digits <>;

type Result Elements is digita <>;

type Left Vectors is array(Axes) of Left Elements;

type Right Vectors is array(Axes) of Right Elements;

t{po Result Vectors is array(Axes) of Result Elements;

with function "*" (Left : Left Elements;

Right Right Elements) return Result Elements is <>;
function Cross_Product (Left Left Vectors; -
Right : Right_Vectors) return Result Vectors;

generic

type Axes is (<>);

type Left Elements is digits <>;

type Right Elements 1is digits <>;

type Result Elements is digits <>;

type Left Matrices is array (Axes, Axes) of Left Elements;

type Right Mat.ices 1s array (Axes, Axes) of Right Elements;

type Result Matrices is array (Axes, Axes) of Result Elements;

with function "*" (Left Left Elements;

Right Right_Elements) return Result Elements is <>;

function Matrix Matrix Multiply
(MatTixl : Teft Matrices;
Matrix2 : Right_Matrices) return Result Matrices;

end Coordinate_Vector Matrix_Algebra;

Figure 5-22: Top-Level Design of Coordinate_Vector_Matrix_Algebra Package
(Release Version 1.0)

74

—

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

5.7.1.3 Maintenance

The CAMP 11th Missile effort identified a limitation in the CVMA parts that prevented them from being used
for many navigation applications: in the initially released version of CVMA, the vectors and matrices were
either 3x1 or 3x3, and it was assumed that the indices were the same on both axes of all the data structures
involved in the operation. For example, in the Matrix_Matrix_Muitiply function shown in Figure 5-22 three
matrix data types were brought in via generic formal parameters. These three matrix types contained different
element types, but both axes of all the matrices were dimensioned by the same data type. Consequently, the
package could be used to do the following:

type Nav_Indices is (X, Y, 2):
type Meters is digits 9;
type Seconds is digits 9;
type Meters r Second is digits 9;
type Meters MatTices is array (Nav_Indices, Nav_Indices) of Meters;
type Meters per Sec_Matrices is array (Nav_Indices, Nav_Indices) of Metera per Second;
type Seconds Matrices is array (Nav_iIndices, Nav_Indices) of Seconds;
Meters Matrix : Meters Matrices;
Metera per Sec_Matrix : Meters per Sec Matrices;
Seconda Ma¥Erix™ : Seconds Matricas;
begin

Meters _Matrix := Meters_per Sec Matrix * Seconds_ Matrix;

ond,

but not the following because the x- and y-axes of all the matrices had to be the same:

type Earth Indices (Greenwich,Right, Polar):
type Navigation Indices is (X, . 2);
type Body Indicas is (Nose, Right Wing, Belly);
type Sin Cos Ratio is digits 9; -

type CNE_MatTices is array (Earth_Indices,
Navxgation Axes) of Sin_Cos_Ratio;
type CBN_Matrices is array (Navigation Axes,
- Body Indiceas) of sin_Cos_Ratio_FP;
type CBE Matrices 15 array (Earth Indices,
Body Indices) of Sin_Cos_Ratio;
éﬁé Matrix : CNE Matrices;
CBN Matrix : CBN Matrices;
CBE Matrix : CBE Matrices;
begin -
CBE_Matrix := CNE_Matrix * CBN Matrix;
end;'.
Yet, this was exactly what the 11th Missile required as part of its earth-to-body transformations. The inability to
specify different indices for the matrices was unacceptable for this application and resulted in the package not
being used for 11th Missile matrix operations, although it was used for the coordinate vector operations. The
general matrix package was used for these matrix operations, but the speed of these operations was suboptimal

because the general package could make no assumptions about the size of the data structures.

During maintenance, the CVMA package was modified to allow all the axes of the vectors and/or matrices in
an operation to be dimensioned by different data types. Figures 5-23-a and 5-23-b show a portion of the
package specification that resulted from these enhancements.

75

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

package Coordinate_Vector Matrix Algebra is

generic
type Axes is (<>):
type Elements is digits <>;

typo Elements Squarod is digits <>;
: in Axes := Axes’FIRST;

Y : in Axes := Axes’SUCC(X);
2 : in Axes := Axes’LAST;
with function "*" (Left : Elements;

Right : Elements) return Elements Squared is <>;
with function Sqrt (Input : Elements Squared) return Elements is <>;
package Vector Operations is

type Vectors is array(Axes) of Elements;

function "+" (Left : Vectors;
Right : Vectors) return Vectors;
function "-" (Left : Vectors;

Right : Vectors) return Vectors;
function Vector Length (Vector : Vectors) return Elements;
function Dot Product (Vectorl : Vectors;
Vector2 : Vectors) return Elements Squared;
function Sparse Right_ 2z Add (Left : Vectors;
Right : Vectors) return Vectors;

function Sparse _Right_X Add (Left : Vectors;
Right : Vectors) return Vectors;
function Sparse Right XY Subtract (Left : Vectors;

Right : Vectors) return Vectors;
function Set_to_Zero_Vector return Vectors;

end Vector Operations;

generic
type M_Indices is (<>);
type N Indices is (<>);
type Elementa is digits <>;

M X : in M Indices := M Indices’FIRST;
MY : in M Indices := M_Indices SUCC (M_X);
MZ : in M Indices := M_Indices’LAST;
N'X : in N Indices := N_Indices’FIRST;
N'Y : in N Indices := N Indlces’SUCC(N X);
N"Z : in N_Indices := N_Indices’LAST;

package Matrix Operations is
type Matrices is array (M _Indices, N _Indices) of Elements;

function "+" (Left : Matrices;

Right : Matrices) return Matrices;
function "-" (Left : Matrices;

Right : Matrices) return Matrices;
function "+" (Matrix : Matrices;

Addend : Elements) return Matrices;
function "-" (Matrix : Matrices;

Subtrahend : Elements) return Matrices;
function Set_to Identity Matrix return Matrices;
function Set to _Zero Matrix return Matrices;

end Matrix Operations;

Figure 5-23-a: Top-Level Design of Coordinate_Vector_Matrix_Algebra Package
(Release Version 1.1) (Part 1 of 2)

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

generic
type Left Axes 1s (<>);
type Right Axes is (<>);
type output axes is (<>);
type Left ETements is digits <>;
type Right Elements is digits <>;
type Output Elioments is digits <>;
type Left Vectors is array(Left Axes) of Left Elements;
type Right Vectora is array(Right Axes) of Right Elements;
type output Vectors is array(Out?uf Axes) of OutpUt Elements;
L X : in Le¥t_Axes := Left Axes’FIRST; -
L Y : in Left Axes := Left Axes’SUCC(L_X);
L2 : in Left Axes := Laft Axes’LAST;
RX : in Right_Axes := Right axes’FIRST;
R"Y : in Right Axes := Right Axes’SUCC(R_X);
BP_Z : in Right Axes := Right Axes’LAST;
07X : in Output Axes := Output Axes’FIRST;
O_Y : in Output”Axes := Qutput Axes’SUCC(0O_X);
o~z in Output_Axes := Output_Axes’LAST;
with function "*" (Left Left Elements;
Right : RightU Elements) return Output Elements is <>;
function Crosa_Product (Left : Left Vectors; -
Right : Right_Vectors) return Output_Vectors;
generic
type Left M Indices is (<>);
type Left N Indices is (<>);
type Right N Indices is (<>);
type Right P Indices is (<>});
type Output M Indices is (<>);
type Output P_Indices is (<>);
type Left ETlements is digits <>;
type Right Elements is digitas <>;
type Output Elements is digits <>;
type Left Matrices is array (Left M Indices, Left N Indices) of Left Elements;
type Right Matrices is array (Right N Indices, Right P Indices) of Right Elements;
type Output_Matrices is array (outpuf M Indices,output P _Indices) of Qutplt_Elements;
L MX : in Left M Indices := Left M Indices’'FIRST;
LMY : in Left M Indices := Left M Indices’SUCC(L_M X);
L M 2 : in Left M Indices := Left M Indices’LAST; ~ —
L N'X : in Left”N Indices := Left N Indices’FIRST;
LN Y : in Left ™ N Indices := Left N Indices’SUCC(L N X);
LN"Z : in Left N Indices := Left N Indices’LAST; — —
RN X : in Right N Indices := Right N Indices’FIRST;
RTN_Y : in RightTN"Indices := Right_ N Indices’SUCC(R N X);
RN Z : in Right N Indices := Right N Indices’LAST; ~ —
RP'X : in Right"P Indices := Right P _Indices’FIRST;
R_P_Y : in Right"P Indices := Right P Indices’SUCC(R P X);
RP"Z : in Right P Indices := Right P Indices’LAST; ~ ~
OM X : in Outpuft M Indices := outpuft H Indices’FIRST;
OTMY : in Output M Indices := Output”M Indices’SUCC(O_M X);
O"M 2 : in Output M Indices := Output M Indices’LAST;
O_P X : in Output_P_Indices := Output”P_Indices’FIRST;
O"P_Y : in Output P Indices := Output P Indices’SUCC(O P X);
O_P_Z : in Output P_Indices := Output”P_Indices’LAST; ~ ~
with function "*" (Left : Left Elements;
Right : Right Elements) return Output_Elements is <>;

function Matrix Matrix Multiply
(MatTixl : Left Matrices;
Matrix2

end Coordinate_Vector Matrix Algebra;

: Right_Matrices) return Output_Matrices;

Figure 5-23-b: Top-Level Design of Coordinate_Vector_Matrix_Algebra Package
(Release Version 1.1) (Part 2 of 2)

77

0t —

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

5.7.1.4 Further Enhancements

The package could have been further generalized by modifying the CVMA .Vector_Operatioris. The package,
shown in Figure 5-23-a, brings in three data types and two functions. One of these dat~ types (Elements
_Squared) and one of the functions (Sqrt) are required for the Vector_Length function expc.ted by the package.
In order to instantiate this package, a square root function contained in another package must be instantiated
even if the new application does not require the Vector_Length function.

Figure 5-24 shows an alternate version of the Vector_Operations package. In this version, the Vector_Length
function and associated generic parameters have been reorganized into a generic function declared within the
Vector_Operations package. This version eliminates the need to provide these parameters when the applica-
tion does not require a length function, thereby making the package easier to user. The disadvantage is that
I projects requiring the length function are forced to perform an additional instantiation. The original design was
ciosen because the domain analysis indicated that coordinate vectors frequently r2quired a length function.

Package Coordinate Vector Matrix Algebra is

generic

type Axes is (<>);

type Elements is digits <>;

X : in Axes := Axes’FIRST;

Y : in Axes := Axeas’SUCC(X);

z : in Axes := Axes’LAST:

with function "*" (Left : Elementa;

Right : Elementa) return Elements Squared is <>;

package Vector Operations is -

type Vectors is array(Axes) of Elementas;

function "+" (Left : Vectors;
Right : Vectors) return Vectors;
function "-" (Left : Vectors;

Right : Vectors) return Vectors;
function Dot_Product (Vectorl : Vectors;
Vector2 : Vectors) return Elements Squared;

function Sparse_Right Z Add (Left : Vectors;

.= Right : Vectors) return Vectors;
func*ion Sparse Right X Add (Left : Vectors;

-~ Right : Vectors) return Vectors;
function Sparse_Right XY Subtract (Left : Vectors;

Right : Vectors) return Vectors;
function Set_to_2Zero Vector return Vectors;

generic
type Elements Squared is digits <>;
with function Sqrt (Input : Elements Squared) return Elements is <>;
with function Sqrt (Input : Elementa Squared) return Elements is <>;
function Vector_ Length (Vector : Vectors) return Elements;

end Vector Operations;

end Coordinate_Vector Matrix Algebra;

Figure 5-24: Modified Top-Level Design of Vector_Operations Package

78

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

5.7.2 Case Study 2: Data Typing

This case study builds on the data typing guidelines from Section 5.6, using the trigonometric packages initially
introduced there. In the following paragraphs, four different designs of a trigonometric package are discussed.
Each has been designed to support different degrees of data typing and to provide varying degrees of control to
the user. The purpose of this case study is to show how the design of these packages affects their incor-
poration into the user’s application. For each package it is shown how it could be used (1) in a weakly typed
applications using either the Ada predefined type FLOAT or a user-defined data type (e.g., type My_Float is
digits 6;), and (2) in a strongly typed application.

One characteristic of a well-designed reusable part is the ease with which it can be incorporated into a user’s
application. While reusable components should be designed to permit and promote strong data typing, they
should also allow the user to make the final decision regarding the strength of data typing. Consequently, a part
should be designed to be easily incorporated into both weakly and strongly typed applications without requiring
type conversions to be performed with every use.

5.7.2.1 Weakly Typed Parts

The two packages discussed in this paragraph employ weak data typing. One of these packages is generic, the
other is not. The primary difference between these packages is the degree of control given to the user.

1. In the trigonometric package shown in Figure 5-25, the predefined data type FLOAT is used to
define the input and output parameters, giving the user no control over the data types.

package TrigOpnsla is

-- --expects inputs in units of radians
function sin (Angle : FLOAT) return FLOAT;
function Cos (Angle : FLOAT) return FLOAT;
function Tan (Angle : FLOAT) return FLOAT;

end TrigOpnsla;

Figure 5-25: Weakly Data Typed Package (Float)

This version will fit into the user’s application if that application uses the predefined data type
FLOAT, but, if the user creates his own general data type (e.g., type My_Float is digits 6;) or
employs stronger data typing, he will be forced to perform type conversions for all calls to
routines in this package. The examples in Figure 5-26 show the use of this package by an
application using the predefined data type FLOAT and stronger data typing than prcvided by
this package.

79

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

with TrigOpnsla;
procedure User Application is

Angle : FLOAT;
Cos_of Angle : FLOAT;
begin -

_ le := TrigOpnsla
end User_Application;

with TrigOpnsla;
procedure User Application is
type Radians is digits 6;

type Ratios 1is digits 6;
Radian Angle : Radians;
Cos_of Angle : Ratios;

begin

end User_Kpplication;

Cos_of Angle := Ratios(TrigOpnsla.Sin(FLOAT(Radian_Angle}));

.Sin(Angle);

Figure 5-26: Use of Weakly Typed Non-Generic Package

If the user’s application employs stronger data typing than the reusable part, an interface pack-
age could be written rather than calling the trigonometric package directly and performing the
necessary type conversions. This way, the floating point trigonometric package would appear to
the rest of his application as a strongly typed package. This is illustrated in Table 5-6.

Use of an interface package successfully solves the problem of interfacing a strongly-typed ap-
plication with weakly typed parts, but it imposes an additional burden on the user that can be

avoided through more careful design.

Table 5-6: Interface to Weakly Typed Non-Generic Package

end Trig;

with TrigOpnsla;

package body Trig is

function Sin (Angle : Radians)
return Ratiocs is
Answer : Ratios;
begin
Answer :=

return Answer;
end Sin;

end' 'i‘éig;

CODE EXAMPLE COMMENTS
package Trig is This package acts as an interface to the
type Radians is digits 6; TrigOpnsla package.
t¥ge Ratios 1is digits §6; aCp packed
function Sin (Angle : Radians) return Ratios;
function Coa (Angle : Radians) return Ratios;
function Tan (Angle : Radians) return Ratios;

Ratios (TrigOpnsla.Sin (FLOAT (Angle}))

with Trig;

procedure User Application is
Radian Angle : Trig.Radians;
Cos_of_Angle : Trig.Ratios;

begin ~

end User Xpplication;

Cos_of Angle :=~ Trig.Sin(Radian_Angle);

Strong data typing can be maintained by
application code without required type
conversions on each call through use of
interface package.

2. In the trigonometric package shown in Figure 5-27, weak data typing is also employed, but in
this example the package is generic and its single data type is brought in via a generic

parameter.

80

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

generic
type Values is digits <>;

package TrigOpnslb is

-- --expects inputs in units of radians
function Sin (Angle : Values) return Vvalues;
function Cos (Angle : Values) return Values;
function Tan (Angle : Values) return Values;

end TrigOpnslb;

Figure 5-27: Weakly Data Typed Package (Generic)

The generic aspect of this package gives the user more control since he can either use the
predefined data type FLOAT or define his own universal floating point type. The examples in
Table 5-7 show how this package can be used in either situation.

Table 5-7: Use of Weakly Typed Generic Package in Weakly Typed Application

CODE EXAMPLE COMMENTS
with TrigOpnslb; Use of TrigO, slb package in applica-
procedure User Application is tion usi.ng Ada predefined type
package Trig is new TrigOpnslb FLOAT

(Values => FLOAT):;

Angle : FLOAT;
Cos_of | Angle : FLOAT;
begin

Cos_of Angle := Trig.Sin(Angle);
end User xpplication,

with Trigopnalb; Use of TrigOpnslb pac in an ap-
procedure User Apflication is plications defining general tloating point
type My_Float i1s digits 6; type.
package Trig is new TtigOpnalb
(Values => My Float);

Angle : My Float;
Cos_of Angle : My Float;
begin

Cos of Angle := Trig.Sin(Angle);
end User Kpplication,

The package shown in Figure 5-27 gives the user greater control than the one in Figure 5-25,
but still forces the user to perform type conversions if he employs stronger data typing in his
application than in the reusable parts.

The example in Table 5-8 shows the use of this package in an application employing strong

data typing.
Table 5-8: Use of Weakly Typed Generic Package in Strongly Typed Application
CODE EXAMPLE COMMENTS
with TrigOpnslb; Type conversions are required if the
procedure User Application is TrigOpns1b package is called directly by
typs My Float ls digits 6: an application employing strong data
“ype Radians 1is digits 6; typing.

type Ratlos is digits 6;
package Trig is new TrigOpnslb
(Values => My Float):

Radian Angle : Radians;

Cos_of_Angle : Ratios;
begin

Cos_of Angle := Ratios(Trig.Sin(My_ | Float (Angle)));
end Userx prlication,

As with the previous package, an interface package could be written by the user to provide a
clean interface between his strongly-typed application and the weakly typed trigonometric pack-
age. This interface package could also provide overloaded routines for angles with units other
than radians. This is illustrated in Table 5-9.

81

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN LLVELOPING and USING ADA PARTS in RTE APPLICATIONS

Table 5-9: Interface to Weakly Typed Generic Package

CODE EXAMPLE COMMENTS
package Trig is This package acts as an interface to the
type Radians is digits 6; TrigOpnsla package

type Degrees is digits 6;
type Ratios 1is digits 6;
function Sin (Angle : Radiana) return Ratios;
function Cos (Angle : Radians) return Ratios;
function Tan (Angle : Radians) return Ratios;
function Sin (Angle : Degrees) return Ratios;
function Cos (Angle : Degrees) return Ratios;
function Tan (Angle : Degrees) return Ratios;
end Trig;

with TrigOpnsalb;
package body rrig
package My Trig is new
“Trigopnslb (Values => Radians);
function Sin (Angle : Radians) return Ratiocs is
Anawer : Radians;
begin
Anawer := My Trig.Sin(Angle);
return Ratios (Anawer);
end Sin;

function Sin (Angle : Degrees) return Ratios is
Answer : Radians;
R_Angle : Radians;
begin
R_Angle := Convert_to_Radians (Angle);
Answer := My Trig-Sifi(R_Angle);
return Ratios{Answer);

end Sin;

ond.ffig;

with Trig; Use of the interface package, allows ap-

procedure User Application is plication code to maintain strong data
Radian Angle : Trig.Radians; typing without performhg type conver-
Cos_of_Angle : Trig.Ratios; sions with every call

begin

Cos_of Angle := Trig.Sin(Radian_Angle);
end User_Xpp ication;

5.7.2.2 Strongly Typed Parts

Both of the packages discussed in this paragraph employ strong data typing and are generic. As with the
previous examples, these packages differ in the degree of control they offer the user.

1. The package shown in Figure 5-28 not only supports strong data typing, but actually forces the
user to employ strong data typing or perform type conversions with each call. This is because
the exported subroutines do not operate on the data types brought in via generic parameters,
but rather on locally declared data types which are derived from the general formal types.

generic
type Input Values is digits <>;
type Output Values is digitas <>;
package TrigOpnsZa is
type Radians new Input Values;
type Degrees 13 new Input Values;
type SC Ratios is new Output Values;
type T Ratios is new Output Values;
function Sin (Angle : Radians] return SC_Ratios;
function Cos (Angle : Radians) return SC Ratios;
function Tan (Angle : Radians) return T Ratios;
function Sin (Angle : Degrees) return ST _Ratios;
function Cos (Angle : Degrees) return SC Ratios;
function Tan (Angle : Degrees) return T_Katioa;
end TrigOpns2a;

Figure 5-28: Strongly Data Typed Package (Inflexible)

82

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

Table 5-10 illustrates the use of this more strongly data typed package by an application using

the predefined data type FLOAT.
Table 5-10: Strongly Typed Part in Weakly Typed Application
CODE EXAMPLE COMMENTS
with TrigOpns2a; The type conversions would be required
procedure U:er_l\fplication is with each call because the TrigOpns2a
package Trig 1s new TrigOpns2a package forces strong data typing.

(Input Values => FLOAT,
Output Values => FLOAT);

Angle : FLORT;
Cos_of _Angle : FLOAT;
begin

Cos of Angle :=
FLOXT (Trig.Cos (Trig.Radians (Angle)));
end User Application;

This package is an improvement over the packages shown in Figures 5-25 and 5-27 in that it
supports strong data typing, requires less work to instantiate than the package shown in Figure
5-30 because it has fewer generic parameters, and does more work for the user than the pack-
age in Figure 5-30 because it exports the data types. It has a disadvantage over the package in
Figure 5-30 in that it forces the user to either perform type conversions with each call or write
another layer of code between it and the application if the user wants or needs to declare his
data types external to this package (e.g., in another trigonometric package that he is using); this
makes the package subject to misuse.

Figure 5-29 shows an example of an application which uses two trigonometric packages, the
one previously shown in Figure 5-28, and a new, faster package. Since both of these packages
export data types, the user must either choose one of the sets of data types and perform type
conversions when calling the other package (this is the alternative chosen in the following ex-
ample), or declare his own data types and perform conversions on all calls. The requirement to
perform type conversions increases the possibility of misuse of the package — if a data type is
converted to the "wrong" type, the wrong routine will be called.

The problem of merging both of these trigonometric packages into one application could be
resolved through the use of an interface package as shown in Table 5-11. This, however,
imposes an unnecessary burden on the user that can be avoided through more careful design.

83

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

generic
type Input Values is digits <>;
type Output Values is digits <>;
package Really Fast TrigOpns is
type Radians Ts new Input Values;
type Degrees is new Input Values;
type SC Ratios is new Output Values;
type T_ﬁatioa is new Output Values;
function Sin (Angle : Radians] return SC_Ratios;
function Cos (Angle : Radians) return SC Ratios;
function Tan (Angle : Radians) return T Ratios;
function Sin (Angle : Degrees) return ST Ratios;
function Cos (Angle : Degrees) return SC Ratios;
function Tan (Angle : Degrees) return T_Ratiol;
end Really Fast TrigOpns;

with Really Fast_ TrigOpns;
with TrigOpns2a;
procedure User Application is
type My Input Values is digits 6;
type My Output _Values is digits 6;
package Fast Trig is new Really Fast Tri ns
(Tnput_Values => My Input Values,
output_Values => My Outpuft Values);
package Trig is new TrigOpns2a
(Input Values => My Input Values,
output Values => My Output Values);

Angle : Fast_Trig.Radians;
Cos_of_Angle : Fast_ Trig.SC_Ratios;
begin -

== =~As long as the application only called routines in the Fast Trig

~=- =-=-package, no type conversions would be required -
Cos_of_Angle := Fast_Trig.Cos(Angle);

-- --When the user wanted to call the other Trig package, type

~= =--conversions would be required which could lead to the following

-- --error where a ‘degree’ cosine function is use to operate on an

-- ~-angle with units of radians

Cos_of Angle := Fast_Trig.SC_Ratios(Trig.Cos(Trig.Degrees (Angle)));
end User Rpplication; ~ -

Figure 5-29: Use of Multiple Trig Packages

84

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN

Table 5-11: Interface to Multiple, Inflexible Trig Packages

with TrigoPnaZA;
with Really Fast TrigOpns;
package body Trig is
package Reg Trig is new TrigOpns2a
TInput Values => Radians,
Output Values => Ratios);
package Fast Trig Ts new Really Fast TrigOpns
(Tnput Values => Radians,
Output Values => Ratios);
function Sin (Angle : Radians) return Ratios is
Answer : Reg Trig.Ratios;
begin
Answer := Reg Trig.Sin(Reg Trig.Radians(Angle));
return Ratios{Answer); -
end Sin;

function Fast_Sin (Angle : Radians) return Ratios is
Answer : Fast Trig.Ratios;

begin
Answer := Fast Trig.Sin(Fast Trig.Radians (Angle));
return Ratios (Enswer); -

end Fast_Sin;

CODE EXAMPLE COMMENTS
package Trig is This package acts as an Interface to the
type Radians is digits 6; TrigOpns2a and Really_Fast_TrigOpns
type Degrees is digits 6; packages.
type Ratios is digits 6;
function Sin (Angle : Radians) return Ratios;
functica Cos (Angle : Radlians) return Ratios;
function Tan (Angle : Radians) return Ratios;
function Sin (Angle : Degrees) return Ratios;
function Cos (Angle : Degrees) return Ratios;
function Tan (Angle : Degrees) return Ratios;
function Fast_Sin (Angle : Radians) return Ratios;
function Fast Cos (Angle : Radians) return Ratios;
function Faat:'ran (Angle : Radians) return Ratios;
function Faat Sin (Angle : Degrees) return Ratios;
function Fant:Cos (Angle : Degrees) return Ratios;
function Fast_Tan (Angle : Degrees) return Ratios;
end Trig;

Cos_of Angle := Trig.Cos(Angle);
Cos_of _Angle := Trig.Fast_Cos(Angle);
end User Xpplications; -

end Trig;
with Trig; User of an interface package allows the
procedure User Applications is application program to c:ﬁe routines in
21‘91°f Andgle . grig -::gi;ih!i both trigonometric packages without per-
OB_O A gle : rig. 108; f H 3
begin orming type conversions

2. The package shown in Figure 5-30 has the advantage over the other trigonometric packages
shown in Figures 5-25, 5-27, and 5-28 in that it allows the user to decide for himself how the
data typing should be performed. It supports strong data typing, but does not require it; it also
allows the user to declare the data types external to the package.

This package supports various levels of data typing as shown in Table 5-12. The design also
facilitates the use of multiple trigonometric package as shown in Figure 5-31.

85

FOUNDATIONS of SOFTWARE REUSE

ARCHITECTURAL DESIGN

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

generic
type Radians ie digits <>;
type Degrees is digits <>;
type SC Ratios is digits <>;
type T Ratios is digits <>;

package TrigOpna2b is
function Sin (Angle : Radians) return SC_Ratios;
function Cos (Angle : Radians) return SC Ratios;
function Tan (Angle : Radians) return T Ratios;
function Sin (Angle : Degrees) return ST Ratios;
function Cos (Angle : Degrees) return SC Ratios;
function Tan (Angle : Degrees) return T Ratios;

end TrigOpns2b; -

Figure 5-30: Strongly Data Typed Package (Flexible)

86

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

Table 5-12: Use of Flexible Package in Multiple Applications

CODE EXAMPLE COMMENTS
with TrigOpna2b; In this example, the TrigOpns2b package
procedure Minimal Radian Data_'ryping_}\pplication ia is being using in an application which is
type Unused ia new FLUAT; using the predefined data type FLOAT.
package ‘!‘ri? is new TrigOpns2b To use the generic pac , the user
g:diana :; gm‘“a simply instantiates it, specz' ing FLOAT
Se Ratios = Froar.’ for Radians, SC_Ratios, and T_Ratios if
1. his application requires radian calcula-
T_Ratios => FLOAT); P
begin tions or specifying the same data type for
e Degrees, SC_Ratios, and T_Ratios if his
end Minimal Radian_Data Typing Application; application requires degree calculations.
dians andecbegreet require separate
i 351%‘1‘:?:.1 D Data Typing Application is | Lo to_disamblguate the over-
roce egree Data n cation is
P type Unused ia'nog FLOAT; ~— Yping_ e loaded functions.)
package Trig is new TrigOpns2b
(Radians => Unused,
Degrees => FLOAT,
SC Ratios => FLOAT,
T Ratios => FLOAT) ;
begin -
end Minimal Degree Data_ Typing Application;
with TrigOpns2b; In this example, the user’s application is
procedure Moderate_Radian Data_ Typing Application is employing slightly stronger data typing.
type Angles is digits %; While he does not need to specify the
:ng‘ g:ﬁt:; i: ﬁgit: 2; difference between a radian and an
° ; -
package Trigni;inow TrigOpn:Zb 1 zzglte}:t?ci ?‘:lnel /' cosnl:: dm'gos;';?:“; tg,]ne
(p:gr::: -> 3’,}3,:3; difference between the input and output
8C Ratios => Ratios, values. He therefore instantiates the
T Ratios => Ratios); TrigOpns2b package, providing separate
begin = types for the data types of the inputs
e (radians and d es) and outputs
end Moderate Radian Data_ Typing_ Application; (SC_Ratios and T_Ratios) when specify-

with Trigopna2b; ing the generic actual parameters.

procedure Moderate Degree Data_ Typing Application is
type Angles is digits §;
type Ratios is digits 6;
type Unused is digits 6;
package Trig is new TrigOpns2b

(Radians => Unused,
Degrees => Angles,
SC Ratios => Ratios,
T_Ratios => Ratios);

begin
end ' l'lt':dorato_bogroo_oat a_Typing_Application;

with Trigopns2b; In this example, the TrigOpns2b package
procedure Strong_Data Typing Application is is being u: in an application employing
type Radians ~ is digits &; strong data typing. Here the user has
type Degrees is digits 6; specified different data types for each of
type SC Ratios is digits 6; the generic actual data types
type T Ratios is digits 6; ge .
package Trig is new TrigOpnszb
(Radians => Radians,
Degrees => Degrees,
8C Ratios => SC Ratios,
T Ratios => T Ratios);
begin - -

end’ ét':rong_Data_Typing_Applicat ion;

87

FOUNDATIONS of SOFTWARE REUSE

ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

generic
type Radians is digits <>;
type Degrees is digits <>;
type SC Ratios is digits <>;
type T Ratios is digits <>;
package Really Fast TtigOpna is
function SiR (Angle : Radians) return SC_Ratlos;
function Cos (Angle : Radians) return SC Ratios;
function Tan (Angle : Radians) return T Ratios;
function Sin (Angle : Degrees) return sT Ratios;
function Cos (Angle : Degrees) return SC Ratios;
function Tan (Angle Degrees) return T Ratios;
end Really Fast TrigOpns,
with Tri na2b;
with Really Fast_ Trigopns;
is

procedure Strong Data Tyfing Application
gits §;

type Radians is di

type Degrees

is digits 6;

type SC Ratios is digits 6;

type T Ratios

is digits 6;

packagé Trig is new TrigOpn-Zb

(Radians
Degrees
SC Ratioas
T Ratios

=> Radians,
=> Degrees,
=> SC Ratios,
=> T Ratios);

package Fast Trig is new Really Fast TrigOpns

(Radians

Degrees

SC_Ratios

T Ratios
begin -

=> Radians,
=> Degrees,
=> SC Ratios,
-> T_Fatiol);

end.éérong_Data_Typing_Application:

Figure 5-31: Use of Multiple Flexible Trig Packages

88

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ARCHITECTURAL DESIGN

5.8 Summary

The design approach presented here was used in development of the CAMP parts set. lIts use in other domains
will show the power of this approach in developing an integrated parts base. The ease with which parts can be
fit into an application has shown the method to be extremely effective (see Reference {31]). The CAMP parts,
which employ this method, have been easy to maintain, and the CAMP parts base has been extended as
applications discover the need for additional parts.

Six alternative approaches were evaluated: typeless, overloaded, generic, abstract state machine, abstract data
type, and skeletal code. The semi-abstract data type method is a hybrid approach based on the generic and
overloaded methods. This was the approach was developed and used on the CAMP program. The method
emphasizes the importance of efficiency. It utilizes derived types and subprograms, generic instantiation, and
subprogram overloading. Multiple layers of generics provide the user with a broad selection of parts for an
application. Predefined types and operators can be used to instantiate generic parts. This method is also
characterized by what is referred to as a part bundle. A bundle is a collection of parts dealing with a particular
type or class of object or operation, together with their environment. A key feature of the semi-abstract data
type approach is the open architecture — the user can substitute his own parts for predefined parts anywhere
in the part hierarchy. The semi-abstract data type is under the user’s control.

89

FOUNDATIONS of SOFTWARE REUSE
ARCHITECTURAL DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

90

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING

CHAPTER 6
DETAILED DESIGN and CODING of SOFTWARE PARTS

In many respects, the activities during detailed design and coding are the same for both reusable software and
custom code:

1. Completion of preliminary or top-level design
. Allocation of requirements to lower level software components
. Preparation of a software or unit development file (SDF/UDF)
. Preliminary design walkthrough
. Completion of detailed design
. Preparation of test procedure
. Detailed design walkthrough
. Coding
9. Code walkthrough
In this chapter the differences that arise during development of reusable code versus custom code will be dis-
cussed, e.g., the special documentation needs of reusable software, the importance of coding guidelines and a
few suggestions for developing these guidelines, and the impact of reuse on design reviews.

W NN bW

6.1 Merging Detailed Design and Coding

Detailed design and coding can often be merged through the use of Ada as the design language. The primary
purpose of the program design language (PDL) representation developed during detailed design is to improve
understanding of the software by providing additional information that is an appropriate level of abstraction
above the code. The key here is that detailed design should be at a higher level of abstraction than the code. If
it is not, then there may be excessive duplication of effort during detailed design and coding. Certain charac-
teristics indicate when it is appropriate to skip development of PDL and go directly to code for development of
parts.

o Low-level requirements: The requirements are specified at a very low level. For example, in the
CAMP parts set, the algorithms for many of the math parts were completely specified during the
requirements phase, therefore, there was no need to repeat these algorithmic requirements in the
detailed design.

o Parts built from other parts: High-level parts can be designed to accept other parts as generic
parameters. The highest level parts directly instantiate other parts that are required to perform
lower level operations. The example in Figure 6-1 shows the detailed design/code for the proce-
dure 'Kalman_Filter_Complicated_H_Parts.Sequentially_Updated_Covariance_Matrix_and_State_
Vector Update’, and illustrates the instantiation of parts within other parts. The PDL for this
procedure would be similar to the following:

for each measurement in the state vector loop
compute K (Kalman gain)
update P {err~r covariance matrix)
update X (¢! ate vector)

end loop

The actual code for this procedure would be very similar to the PDL if, as in the CAMP parts, the
calculations of a new K, P, and X consisted simply of calls to other routines. This similarity can
be seen by comparing the PDL above with the actual code, shown in Figure 6-1, which contains
nothing more than a loop and three subroutine calls.

91

FOUNDATIONS of SOFTWARE REUSE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

e Parts are small: Parts tend to be small. The CAMP parts averaged less than 36 lines of code,
and, therefore, were relatively simple. The need for high-level comments frequently decreases as
the simplicity of the code increases. This can be seen in Figures 6-2 and 6-3 which contain
simple and relatively complex routines, respectively. Figure 6-2 shows a piece of code which sets
all elements of a symmetric, full-storage matrix to 0.0. The code for this procedure is quite
simple and self-explanatory, and thus, contains no comments other than those in the code
header. Figure 6-3, on the other hand, contains a more complicated piece of code which sub-
tracts a symmetric, full-storage matrix from an identity matrix. Because of the complexity of this
code, comments in addition to those contained in its code header are required. The ratio of
comments to code for this piece of code is better than 1:2.

While merging of the detailed design and coding phases, hereafter referred to as detailed design, is not always
appropriate, a part's developer should evaluate his situation to determine applicability. An additional considera-
tion before making this decision is the develcpment and documentation standards imposed by the customer
(e.g., if PDL is required by the customer, then detailed design and coding cannot be merged without customer
approval).

6.2 Identification of Additional Parts

Additional components may be identified during design and implementation. For instance, it may become
apparent that variants of previously identified parts may be needed. Supporting parts may also be identified.
In general, most of the parts identified during this time will be lower level parts. It is important that supporting
or lower level parts identified during this time be developed as separate components, otherwise their
functionality may be repeated across several other components.

6.3 Design Reviews

The design presented for walkthrough must be reviewed to ensure conformance with requirements, confor-
mance with existing design and coding standards, consistency with other parts, completeness of documentation,
and conformance of code headers to any documentation standards. Enforcement of standards in the develop-
ment of reusable software is essential.

The primary differences between reusable code and one-shot code are as follow:
» Reusable code must be designed to accommodate anticipated future use.

¢ Reusable code may need to be more robust.

¢ Reusable code must minimize external dependencies that might be acceptable in custom code.
These factors must be taken into consideration during design reviews.

Although domain experts should be included in the domain analysis and should act as reviewers for both re-
quirements and top-level design, they are not always needed as reviewers for the detailed design/code. Inclu-
sion of domain experts in the detailed design review is dependent upon the complexity of the part.

¢ Assuming the requirements and top-level design have been reviewed by a domain expert, and that
the algorithm is relatively straightforward, there may be little value in participation by a domain
expert unless he is knowledgeable about the design/implementation language.

92

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

FOUNDATIONS of SOFTWARE REUSE
DETAILED DESIGN and CODING

function Compute Kalman Gain
procedure Update Error_ Covariance Matrix
procedure Update_State Vector

K : K_Column Vectors;

procedure Update (P
X
2
Complicated K
Measurement Variance

begin

K := Compute K (P

Complicated H

Measurement Vari

Update_P (P =>
Measurement Number m=>

K =->
Complicated H ->

Update_X (X =->
2 ->

K =>
Measurement Number =>
Complicated H =>

end lonp;

end Update;

end Kalman Filter Complicated H Parts;

package body Kalman Filter Complicated H Parts is

package body Sequentially Update_Covariance_Matrix_and_State_Vector is

function Compute K is new Compute_Kalman Gain
procedure Update P is new Update Error_ Covariance_Matrix
procedure Update X is new Upclate_State_Vector

in out P _Matrices;

in
in
in
in

for Measurement Number in Measurement Indices loop

Measurement Number

ance

P,

Measurament Number,

K,
Compl

Measurement Number,

Compl

end Sequentially Update_Covariance Matrix_and State Vector;

out State Vectors;
Measurement Ve:tors;
H Matrices;
Measurement Variance Vector) is

=> P,

=> Measurement Number,

=> Complicated_H,

=> Measurement Variance);

icated H);

icated H):

Figure 6-1: For High-Level Parts, Detailed Design is Code

begin

end Set To_Zero Matrix;

separate (General Vector Matrix Algebra.
Symmetric Full_ Storage_Matrix Operations_Unconstrained)
procedure Set To Zero Matrix (Matrix

Matrix := (others => (others => 0.0));

out Matrices) is

Figure 6-2: Simple Parts Require Few Comments

FOUNDATIONS of SOFTWARE REUSE

DETAILED DESIGN and CODING

function Subtract_from_Identity (Input : Matrices) return Matrices is

Answer : Matrices (Input’/RANGE (1), Input’/RANGE(2)):
Col ¢ Col_Indices;

Col_Count : POSTITIVE;

Row : Row_Indices;

Row _Count : POSTITIVE;

5 Co : Col_Indlces:

S_Row : Row_Indices;

begin

-- --make sure input matrix 1s a square matrix
if Input’/LENGTH (1) = Input’/LENGTH(2) then

-- --will subtract input matrix from an identity matrix by flrst
-- —-subtractin? all elements from 0.0 and then adding 1.0 to the
)

-- --dlagonal elements;

- ~--when doing the subtraction, will only calculate the remainder

- --for the elements in the bottom half of the matrix and will simply
- --do aisignments for the symmetric elements in the top half of the
-- --matrix

Row_Count := 1;

-- ~-S_Col will go across the columns as Row goes down the rows;
-- --wIll mark column containing the diagonal element for this row
Row 1= Input/FIRST(1);
S Col := Input’/FIRST(2);
Do_Every Row:

loop

Col_Count := 1;
- --S_Row will go down the rows as Col goes across the columns;
-- --when paired with 3 Col will mark the symmetric counterpart
- --to the element being referenced in the bottom half of the
-- --matrix

Col t= Input/FIRST(2);

S_Row := Input/FIRST(1);

Subtract_Elements_From_Zero:

loop -

-- --perform subtraction on element in bottom half of matrix

Answer (Row,Col) := - Input (Row,Col);

-- --oxit loop after dlagonal element has been reached
exit Subtract_Elements_From_Zero when Col Count =
Row_Count;

-- --assign values to s¥mmetric elements in top half of matrix
-— -~(done after check for diagonal, since diagonal elements
== -- don’t have a s¥mmetric counterpart)

Answer (S_Row,S_Ccl) := Answer (Row,Col};

- -~-increment varlables

Col Count := Col Count + 1;

Col™ := Col Indices’SUCC(Col);
S_Row := Row_Indices’SUCC(S_Row);

end loop Subtract_Elements_From_Zero;

- --add one to the diagonal element
Answer (Row, Col) := swer (Row, § Col) + 1.0;

exit Do_Every Row when Row_Count = Input’/LENGTH(1};
Row_Coutit := Row_Count + 17

Row™ Row_Indices’ SUCC (Row) ;

S_Col Col”Indices’SUCC(S_Col);

and loop Do_Every Row;
else
raise Dimension_Error;
end {f;
return Answer;

end Subtract_from ldentity;

Figure 6-3: Complicated Parts Require More Comments

94

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS ia RTE APPLICATIONS DETAILED DESIGN and CODING

¢ As the complexity of algorithms increases, it becomes increasingly difficult for non-domain ex-
perts to understand them. A domain expert may more readily be able to verify the correctness of
the code, whereas a non-domain expert must rely solely on tracing the requirements to the
design.

The designer (who is not also a domain expert) may misinterpret the requirements, resulting in
parts that do not meet the needs of future users. The domain expert reviewer is more likely to
identify overall design flaws, whereas the software engineer reviewer is likely to identify only
minor deviations from the requirements. Again, the value of domain expert review depends on
the representation of the design, and on the familiarity the domain expert has with that represen-
tation.

Non-domain experts will generally require more information than a domain expert about complex
algorithms before identifying implementation errors. Non-domain expert reviewers frequently as-
sume that since the designer knows more about the algorithms, then he has probably written
correct code.

6.4 Design for Efficiency

Real-time embedded applications present a particular challenge to the parts developer — efficiency is critical in
these applications. One way to incorporate speed and storage efficiency in the design, is to develop special-
purpose parts. For example, in the CAMP parts set, there is a collection of parts that deal with matrix data
types and operators for matrices of unknown dimensions (i.e., general vector/matrix operations). Within this
collection, there are parts for full storage, half storage, diagonal, and dynamically sparse matrix types and
operators. There is also a collection of special-purpose parts that is specifically for coordinate vector opera-
tions (i.e., coordinate vector/matrix operations); these parts all make use of the fact that the vectors will be of
length 3, and the matrices will be dimensioned by 3. This saves space and time. Use of these different vector
routines is illustrated in Figure 6-4. Here, the casual user (i.e., a user who's first priority is not execution speed)
might use a general routine that requires nine operations to perform the division: 3 x (1 Divide + 1
Increment_Pointer + 1 Test_for_end_of Array). Another user, knowing that he is working with coordinate
vectors, may select the operator that knows about the data structure it is working with; the division would then
require only 3 operations: one division for each element in the coordinate vector. Finally, a third user may
know that one of the coordinate elements is always zero, and develop a special-purpose routine to take this into
account; this division could then be accomplished with only 2 operations.

6.5 Coding Guidelines

Guidelines for coding reusable Ada parts are proliferating. These generally provide suggestions about the use
of various Ada constructs to improve reusability (see References [38], [37], [8], and others). Although ad-
herence to coding standards is important in the development of reusable software, standards alone do not make
software reusable. Many of the guidelines have not been used in RTE applications and tend to adhere to
idealistic goals. Some things to consider when evaluating guidelines for use in the development of reusable
parts are enumerated below.

95

FOUNDATIONS of SOFTWARE REUSE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

(—\ GENERIC PACKAGE
; E Coordinates is (<>);
' A Scalars; ' Elements is dights <>,
CA?RML ¢ | B, C:Vectors; '
us : ' Scalars is Elements;
' C=B/A; A Vectors is array (POSITIVE range <)
! ! of Elements;
4 ’
‘ : Coordinate_Vectors is array
USER E A : Scalars: E (Coordinates) of Elements;
[. .
mERNED H B, C : Coordinate_Vectors; ”;’ee Coordinate_Vectors_with_Z_0
' ‘- . ' Is array (Coordinates) of Elements;
EFFCIENCY | CwB/A ; Yt
' : 2 "" (Vectors, Scalars)
: ! */" (Coordinate_Vectors, Scalars)
’ ' A_J‘_-, /" (Coordinate_Vectors_with_Z_0,
L]
' A : Scalars; ! Scalars)
SLSE\?SRV;ITH : B, C : Coordinate_Vectors_ J
TIMING : with_2_0;]
'
FONSTRAINTS E C=B/A '
' '
L et r e m v e m .o Pl

Figure 6-4: Parts Can Be Designed for Various Degrees of Efficiency
¢ Are the guidelines needed?
¢ Are they being used?
¢ Have they been used on a "real” project?

* Have they been used on a project similar to the one currently under development (i.e., one with
the same types of constraints, etc.)?

¢ What were the results of their use?

¢ How do they differ from good coding practices?

The use of standards during development of reusable parts is important from the point of view of the
developers, as well as the users. When users are assessing a set of parts for possible inclusion in their applica-
tion, they need to learn what types of of.crations are available, hov the parts interface with each other, how
they are going to interface with their application, and what the parts do. In order to do this, they need to be
able to easily understand the parts — this may require learning the style used to organize them, document
them, create names for the packages and subroutines, create names for the data types and objects, etc. The
user’s job will be simplified if the development style for all the parts is the same. In order for the style to be the
same across a given set, standards must be developed early in the parts’ development lifecycle and enforced
throughout the development process. Standards are also useful to parts developers, particularly to new
developers brought onto the project midway through the lifecycle.

Standards for development of reusable code parts should address the following areas:

¢ File Names: How should the files containing the reusable code parts be named? Obviously, this is
system dependent, but a consistent naming scheme should be developed in order to facilitate
component retrieval and configuration management. For example, standards on the CAMP
program required that the primary component of the file name be a two-part prefix, "xxx_yyy_".
The first part of the prefix (i.e., "xxx") consisted of a top-level package identification number (e.g.,
621 for Basic_Data_Types, 684 for Geometric_Operations, 001 for Common_Navigation); this

96

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING

was used on all files pertaining to a particular top-level package, including test procedures, test
plan, test results. The second part of the prefix (i.e., "yyy") was used to indicate the level of
nesting of the part contained in the file and was indicative of compilation order for the top-level
package. For example, a user of the CAMP parts set could obtain a list of all files related to the
Common_Navigation_Parts TLCSC by specifying "001*.*" for retrieval.

+ Naming conventions:

- How should data types and objects be named? Should the names of all data types be
plural and those of all objects singular?

- How should packages be named? Should they reflect the object being manipulated (e.g.,
Ordered_List, Balanced_Tree, Terminal) or should they reflect the operations on the ob-
jects being manipulated (e.g., Ordered_List_Operations, Balanced_Tree_Operations,
Terminal Operations)?

- How should generic units be named? Should they have a name similar to what would be
used in the final application (e.g., Cross_Product, Compute_East_Velocity) or should they
be coded to indicate they are generic (e.g., Cross_Product_Template, Compute_East_
Velocity_Template) so that the end-user can select a name for the instantiation without
being concerned about whether or not that name is the same as the name of the generic
unit (see naming guidelines in Paragraph 5.6)?

- How should abbreviations be handled? Should all words in identifiers be spelled out? Are
some abbreviations acceptable? Should certain abbreviations always be used instead of
spelling the word out (e.g., should ‘Opns’ always be used instead of ‘Operations’)?

¢ Bundling: Should parts be bundled by types of operations and objects or by classes of operations
and objects?

e Context clauses: Should the ‘use’ clause be permitted, and, if so, to what extent? Should it be
permitted at anytime to allow items in other packages to be referenced without qualification?
Should it only be used to allow access to operators (i.e., "+", "-", "*", etc.) with the "honor system”
used to ensure developers use expanded names elsewhere? Should no ‘use’ clauses be allowed so
that it is obvious what is being used from where {perhaps allowing operators to be renamed
locally so that the infix notation could continue to be used)?

» Documentation: How extensive should code headers be? Should they be able to stand on their
own (this will cause the headers to be large with a considerable amount of duplicate information)?
Should they not repeat information that can be found in the code? Should they not repeat
information that can be found in other headers? Should they tell the user how this part can be
used with other parts in the set?

6.6 Documentation

Documentation of re.~~ble parts is critical. Reusable code parts have somewhat different documentation re-
quirements than custom code. The documentation for reusable code parts must include information on adap-
tation, sample usage of the part, and dependencies (e.g., environmental, hardware, compiler, and interpart
dependencies). It also needs to include the standard items, such as purpose, input/output parameters, etc.

Although providing these additional items may impose a burden on the part developer, it eases the way for the
part user. Consider the difficulty in understanding even a short segment of code when it is unfamiliar and
undocumented. See Figures 6-3 and 6-5 to compare the difference that documentation makes. Although parts
users may want to review the code itself, this does not negate the need for comments-to explain use, depen-
dencies, interactions, etc.

Documentation should take two forms — external documents (e.g., requirements, design, user’s manual) and
code headers. Code headers for reusable software will generally contain more usage information than one-shot

97

FOUNDATIONS of SOFTWARE REUSE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

function Subtract_from Identity (Input : Matrices) return Matrices is

Answer : Matrices(Input/RANGE (1), Input/RANGE(2));
Col : Col Indices;

Col_Count : POSITIVE;

Row : Row Indices;

Row_Count : POSTTIVE;

S _Col : Col Indices:

STRow : Row_Indices;

bagin
if Input’/LENGTH (1) = Input’LENGTH(2) then
Row_Count := 1:
Row = Input’FIRST(l)
S_Col := Input'FIRST(Z),
Do Every Row:
Tloop

Col_Count = 1;
Col i= Input'FIRST(Z);
S_Row s= Input/FIRST(1l);

Subtract Elomen s_From_2ero:

loox
nswer (Row,Col) := - Ingut(Row ,Col);
exit Subtract Elements rom Zero when Col Count =
Row_Count;
Answer (S Row,S Col) := Answer (Row,Col);
Col _Count := Col Count + 1;
Col™ := Col” Indices'SUCC(Col
S Row := Row Indices’SUCC(S Row),
amTwpmMndEﬁmmsHMZﬂm
Answer (Row, Col) := Answer (Row, S Tol) + 1.
exit Do Every Row when Row_Count = Input’LBNGTH(l),
Row_Coufit := Row Count + 17
Row = Row Indiues’SUCC(Row),
ol s= Col Indices’SUCC(S _Col) ;
end Toop Do Evary ROw;
else
raise Dimension_Error;
end if;
return Answer;

end Subtract_from Identity;

Figure 6-5: Complicated Parts with No Comments

code. The need for all of this documentation arises from the fact that parts users will not be familiar with the
parts and hence, will need a fairly significant amount of information in order to effectively use them. Ideally,
the documentation should also be available electronically so that the reuser can incorporate it into, or reference
it in, the documentation for his new application.

Reusable Ada parts will, most likely, make extensive use of generic units, thus, a sample instantiation should be
included in the documentation of generic parts. This should show not only how to instantiate the part, but also
how other parts can be used to provide the required generic actual data types, objects, and/or subprograms.
The sample usage section can show how the generic formal parameters can be used to tailor the part, e.g.,
how to tailor a matrix multiplication routine for use with dynamically sparse matrices. During part develop-
ment, this portion of the documentation is time-consuming to produce and easily affected by modifications to
the part, but it can be invaluable during part use. For example, during the CAMP 11th Missile Application
development and during CAMP parts maintenance, the sample usage information turned out to be one of the
more useful pieces of documentation for software engineers who were unfamiliar with the parts.

In many cases, a software developer is required to maintain a software development notebook (Reference [16});
it is generally a good idea regardless of the contractual requirement. A software development file, or notebook,
should be maintained for each part (or group of parts) under development; it is a useful way to capture many of
the decisions that are made in the course of software development, and can be useful as an additional source of
information about reusable software parts. The SDF should be available electronically and should be used to
maintain the information identifted below.

98

FOUNDATIONS of SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING
1. Requirements
2. Preliminary design
3. Detailed design
4. Test plan/procedure, along with test code and test data
5. Test results
6. Problem reports and log: The software discrepancy reports (SDRs) and their disposition.
7. Change orders and log: Software enhancement proposal/software change proposal forms

(SEP/SCP), along with their disposition
8. Walkthrough records, design decisions, notes, etc.
It is important to remember that the guidelines presented in this manual must be reconciled with any customer-
required or contractual documentation standards.

One approach to documentation that can boost both productivity and increase documentation quality is to
maintain the data needed for documentation in a central location and then automatically generate much of the
documentation. This can eliminate redundancy (i.e., the information is entered into the central "repository”
only once and can be extracted for any number of documents that require it), boost productivity (data is entered
only once and changes are made in only one place), and increase product quality (fewer inconsistency because
data is entered and modified in only one place). This is particularly useful for the end-users of the parts. For
example, all of the design information for the CAMP parts is contained in their specification and body headers.
This had two benefits: the information only had to be provided once, and it could be updated at the same time
that the code was maintained. A software tool was developed to extract information from appropriate sections
of the headers for placement in the design documents. Figure 6-1 identifies the type of information that is
maintained in these headers, and indicates which of these sections are extracted for use in the top-level or
detailed design documents (Note: CAMP parts were developed under DOD-STD-2167 not DOD-STD-2167A).
When an updated document was required, the text merely had to be re-extracted.

This type of tool facilitates the production of extensive, high-quality documentation by eliminating tedious and
often error-ridden duplication. Even with the elimination of duplicate documentation, maintaining documen-
tation in a current state is not an easy task. Commercial software tools are also avallable that can be used to
maintain a central data dictionary and generate DoD standard documentation.

929

FOUNDATIONS of SOFTWARE REUSE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Table 6-1: CAMP Code Header Information (DOD-STD-2167)

EXTRACTED FOR
HEADER CONTENTS DESIGN DOCUMENT
Name *
Identification Number *
Security Level
Purpose
Requirements trace *
Context
Utllization of extemal elements
Packages
Subprograms and task entries
Exceptions
Data types
Data objects
Utilization of other elements in top-level component (DD)
Packages
Subprograms and task entries
Exceptions
Data types
Data objects
Input/output
Generic parameters
Data types
Data objects
Subprograms
Formal parameters
Local exceptions/types/objects (DD)
Exceptions
Data types
Data objects
Local entities (DD)
Exceptions raised (DD)
Calling sequence (DD)
Exported exceptions/types/objects (TLD)
Exceptions
Data types
Data objects
Exceptions raised (TLD)
Calling sequence/timing/priority (TLD)
Interrupt handling (TLD)
Sample usage (TLD)
Decomposition (TLD)
Local entities contained in package body (TLD)

@ & & o 8 ¢ ® » s @

s o o

s a ® & o @

100

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS TESTING

CHAPTER 7
TESTING of REUSABLE SOFTWARE PARTS

Rigorous testing is essential to the success of any software reuse effort. One of the factors that has kept reuse
levels low in the past has been skepticism about the quality of available parts. Virtually every software engineer
feels that his code is better than anyone else’s; consequently most engineers are reluctant to trust their projec:
to someone else’s code. Reuse can be jeopardized by reusable components of questionable quality; parts do
not have to be error-ridden to cause problems. This is an extremely important point to keep in mind when
evaluating software for inclusion in a reusable component library.

It is important to provide the test procedures, code, data, and expected test results along with the parts so that
the end-user (i.e., the software engineer who is incorporating reusable software in a new application) can retest
them if he wants. Tests should be repeatable, and test results should be reproducible. Providing the potential
reuser with all of the test documentation (i.e., the test plan, test procedure, test code, and test results) will
increase the likelihood that reusable software is actually reused. Until there is a well-established reusable
software industry that has a widely accepted level of quality and documentation standards, and perhaps even
software warranties, retesting of reusable software components will probably be required. The extent of the
retesting will depend on the application (i.e., Is it mission critical? Does it have hard real-time constraints? Will
integration testing suffice?).

Development of the test plan and procedures should be done in conjunction with a domain expert who would
be in a position to determine both the adequacy of the testing and the expected test results. Testing of parts is
much the same as testing of custom code. Reusable software components are designed to accommodate
needed variation in future applications, thus, more test cases may be required for reusable software thar: for
custom software.

Portability, which is sometimes considered a factor in reusability, can be tested by compiling the parts with
more than one compiler on more than one platform. This will also permit the identification of any uninten-
tional compiler and platform dependencies that may have crept into the code. Reusability among applications
on the same type of platform can also produce savings. When higher-level components, such as requirements
or design, are reused, the portability problem is diminished.

Test activities include the identification and organization of required tests, preparation of a test plan and proce-
dure, preparation of test code and expected test results, actual testing of the part, and evaluation and reporting
of the test results. The test cases should be included in the review at the detailed design walkthrough. Follow-
ing completion of all design walkthroughs and implementation of walkthrough action items, parts should be
given to a tester (preferably someone other than the designer) for development of the test code and actual
testing.

Unit and integration testing of parts can be combined into a single phase if testing is performed in a bottom-up
fashion, i.e., if all parts requiring other parts directly, or designed to use them through generic parameters are
actually tested using the supporting parts which have already passed testing. This approach can shorten testing
by eliminating the need to write code stubs anA by eliminating the need to first test a part in isolation and then
retest it using the parts themselves.

101

]

FOUNDATIONS of SOFTWARE REUSE

TESTING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

In a parts development effort there may be no software integration phase, or it may be quite limited, thus, there
may well be no integration testing. Obviously, composite parts (i.e., parts that are composed from lower-level
parts) would undergo some level of integration testing. There is also no system integration and testing for
reusable parts because of the nature of reusable software.

Figure 7-1 depicts the software testing cycle. Parts may well require several passes through this cycle. A part
should be put under configuration control after successfully passing all tests.

Designer Part given Prepare
prepares test to tester T test code
procedure
lEun ﬁo Eost ; r
6rror(s) T__ Modity _ | Retum pant
detected? test code to tester |
i: yfks
y
>—————in test code —,—J
in test procedure — Prepare SOR Retum Modify pary
5> in part under test j on part part to test procedure
being tested designer
. . Suspend Prepare SDR Correct
>——— in asupporting pat ————>———] testing cn on supporting supporting
current part part part

Update Place part under Compile part
SOF configuration into baseline
management Ada library

Figure 7-1: Parts Testing Cycle

7.1 Unit and Package Testing

In general, both subroutine, or unit-level, and package-level components are tested. Usually unit- and package-
level tests are separate, but they can sometimes be combined or the package-level test can be skipped. Table
7-1 presents a decision matrix that can be used to determine the level of testing that is required.

Package-level testing is not required if there is no interaction among the units in the package. For example, a
data types package that is just a collection of data type definitions and operators, with no data stored in the
package body and units that do not invoke each other, wouild not require package-level testing (e.g., the CAMP
Basic_Data_Types part). If the units and the interactions among them are both simple, the unit tests can be
folded into the package-level test (e.g., Alignment_Measurements) or the unit tests can cover the package-level
test requirements. If the units are complex, then unit-level tests is always required. If the unit interactions are
simple, the package-level test requirements can be covered by the unit tests; if complex, a separate package-
level test should be required.

102

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS TESTING

Table 7-1: Unit- and Package-Level Test Decision Matrix

CASES
1 2 3 4 5

CONDITION

Unit - Simple Simple Complex Complex

Interaction None | Simple Complex Simple Complex
TESTS REQUIRED

Unit Yes | Combine | Part of package test Yes Yes

Package No | Combine Yes Part of unit tests Yes

7.1.1 Unit Test Approach

Unit tests should cover both white box and black box viewpoints. A white box test is designed with knowledge
of the unit's structure. The test cases are set up to exercise all paths through the unit and to invoke all branch
conditions. A black box test is a functional test that assumes nothing about the unit’s internal structure. It
passes in a representative sample of input data and checks to see if the output is as expected.

These two approaches to unit testing can be illustrated using the CAMP Alignment_Measurements package.
This package (see Figure 7-2) takes a sequence of integrated velocities from the navigator, keeps and corrects
running sums of them, and periodically formats the sums into measurements and sends them to the Kalman_
Filter package. Calls to control procedures (Initialize, Set_Measurement_Time, and Cancel_Measurement) in-
itialize the package, specify when a measurement is to be sent to Kalman_Filter, and occasionally cancel a
measurement. Integrate, Put_Reference_Velocity_Integrals, and Apply_Kalman_Position_Corrections receive
data needed to compute or correct the integrated-velocity sums. Get_Integrals returns the current integrated-
velocity sums.

A black box test would invoke the package with a sequence of control and data calls, verify that the current
sums returned by Get_Integrals are correct, verify that the package sends correct measurements to Kalman_
Filter at the correct times, and verify that a measurement is not sent if it has been canceled. The test designer
would use the requirements specification and the Ada package specification to develop the tests.

The white box test designer would also use the package and procedure body listings to generate test cases that
cover all the paths and exercise all the branch conditions. For example, the white box test of procedure
Cancel_Measurement (see Figure 7-3) would call this procedure twice, once with Measurement_Pending true
and once with it false. (Measurement_Pending is stored in the package body.)

7.2 Summary

Because software parts will see use in a variety of situations — some of them not foreseen by the original
developer — testing must be comprehensive in order to ensure correctness and robustness. Testing should be
carried out on a variety of platforms using various compilers; this will ensure that machine/compiler depen-
dencies have not unintentionally crept into the code. Test plans, procedures, inputs, and results should be
made available to the potential part user. This is one way to increase user confidence and facilitate reuse.

103

FOUNDATIONS of SOFTWARE REUSE

TESTING

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

with Nav_Computer_Data_Types;
package Alignment Measurements is

package NCDT renames Nav_Computer_Data Types;

procedure Initialize (Initial Time ; in NCDT.Seconds;
Reference Altitude : in NCDT.Feet FP;
Velocity : in NCDT.Velocity Vectors);
procedure Integrate (Eff_Time_Of Incr Data : in NCDT.Seconds;
Velocity : in NCDT.Velocity Vectors;
Altitude : in NCDT.Feet EFP);
procedure Put_Reference Velocity Integrals
(X_Velocity Integral : in NCDT.Feet_ FP;
Y_Velocity Integral : in NCDT.Feet FP);
procedure Apply Kalman_Position Correction

procedure

procedure

procedure

(Position Error_X : in NCDT.Earth_Position_Radians;
Position Error Y : in NCDT.Earth_Position_Radians);

Get_Integrals (Integrated Vel X : out NCDT.Feet FP;
Integrated Vel Y : out NCDT.Feet FP);

Set_Measurement Time (Time : in NCDT.Seconds);

Cancel Measurement;

end Alignment Measurements;

Figure 7-2: Package Alignment_Measurements

begin

if

with Environment;
separate (Alignment Measurements)
procedure Cancel Measurement is

Measurement Pending then

--send invalid measurement tc the Kalman
Environment .Measurements.Here_is Alignment Measurement
(Time_of Alignm Data => Measurement_Time,

Alignm Vvalid => FALSE,
MeasX => 0.0,
MeasY => 0.0,
MeasZ => 0.0,
varX => 0.0,
varyY => 0.0,
Varz => 0.0);

--cancel measurement pending flag
Measurement Pending := FALSE;

end if;

end Cancel_uoasuromont;

Figure 7-3: Procedure Cancel_Measurement

104

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OTHER TOPICS

CHAPTER 8
OTHER TOPICS in PARTS DEVELOPMENT

In this chapter the following topics will be discussed with respect to the development of reusable software
components:

¢ Management issues

o Scope of software reuse

¢ Parts development organizations
« Configuration management

e Maintenance

¢ Ada language considerations

e Tools

8.1 Management Issues

Management 1ssues can be broken into two categories: management support and management of the process.
In the following paragraphs both issues will be discussed as they relate to the development of reusable software.

8.1.1 Management Support

Management support is needed in obtaining the resources to acquire (i.e., develop or purchase) reusable com-
ponents and integrate reuse into the software development process. When a reuse program is begun, manage-
ment must realize that they are making an investment in future software development efforts and that the
payback may not be immediate. Management needs to stop thinking about software as a disposable good and
start thinking about it as an investment. Reusable software provides a way to capture domain expertise and
apply it to future application development.

In order for the development of reusable software components to be cost-effective, the additional cost as-
soclated with their development must be amortized over several uses. The additional cost results from the need
to perform a domain analysis, the need to identify areas of variability for future software development efforts,
and the need for additional testing (e.g., to cover the areas of variability) and documentation. It is extremely
difficult for a project to begin a reuse program on its own because of the relatively high cost of parts develop-
ment, and the realities of project time and cost constraints. It may be necessary, at least initially, for manage-
ment to provide additional funding to projects to cover the start-up costs of software reuse.

It is sometimes difficult to establish widespread software reuse within an organization, even when management
supports the cause. The manager of one software reuse group had management support, but still lacked
project support aithough he had data to show that use of his parts could save projects time and money. In this
particular case, his group developed common utilities that were broadly applicable to the types of software
developed by his company. When a new project was initiated, this software reuse manager would meet with
the project mianager to discuss the availability and application of reusable components. The general arrange-
ment was that the reuse group would bear the cost of component development and would assist in the use of
the components. They would also provide maintenance as long as the components were not modified. Even
with this type of support, projects were reluctant to "sign up."” (Reference {40})

Management can promote reuse by a combination of mandate and incentives. One of the traditional barriers to
software reuse is a "cultural” barrier — the "not invented here" syndrome plays a significant role in inhibiting
reuse. At least initially, it may be necessary for management to require each project to at least examine and
evaluate available components. A company's (or project's) software engineering practices can be modified to

105

FOUNDATIONS of SOFTWARE REUSE
OTHER TOPICS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

make reuse part of the standard practices. Reviews can then be used to determine the extent to which reusable
components are used in the object under review, as well as areas where reusable components could have been
used but were not. Incentives can take a number of different forms. Software developers can be rewarded for
the amount of software they reuse within a given period, or they can be rewarded for the amount of reuse that
their software sees during a given period. Both approaches have been used.

8.1.2 Process Management

Reviews play a particularly important role in the development of reusable software, particularly during domain
analysis and initial parts development. During domain analysis, reviews are needed to ensure that the domain
analysts do not wander too far from the domain of interest. Domain expert review is critical during the entire
process, with the possible exception of detailed design and coding activities.

Reusable component development requires close ties with the customer, regardiess of whether the customer is
internal (e.g., a project group), or external (e.g., a government agency). A parts development group must be
responsive to customer needs, and must maintain good communications in order to ensure that the reusable
software will actually meet the customer’s needs.

When undertaking a software reuse program, management must ensure that the proper personnel are available
to staff the effort. A parts development team needs to be highly skilled in modern software engineering prin-
ciples, as well as in the implementation language. They need to have a high level of discipline so that software
development and coding standards are followed throughout the parts lifecycle. And they need good com-
munication skills in order to work effectively with the domain experts, the customer, and management.

8.2 Scope of Reuse

Reuse can be practiced at more then one organizational level, i.e., it can be practiced at the project level,
program level, company level, corporate level, industry, etc. At the lowest level — the project level — a project
group would identify portions of an application that are common across the project and develop those parts in
such a way that they could be reused within the application. In this case, the project would both develop and
use the reusable software. Once the project had developed and tested the parts, they should be evaluated for
dissemination to other projects (i.e., they may find use on other applications) or for inclusion in a reuse library
system. The chance that these components would be useful outside the project is not great, but the project
may still see significant benefits from this type of reuse. One of the barriers to widespread use of project-
developed software parts is that project personnel generally are not versed in the development of reusable
software, thus their code may require significant effort to make it usable by other developers.

At another level, reusable software may be developed for a particular domain by a third party. In this case, the
software would have broad applicability, e.g., math parts, user interface parts, database parts. Such parts could
be used by a wide variety of projects, thus spreading the development cost.

In most of this manual, we assume that reuse is being practiced somewhere above the project level, e.g., parts
are being developed at the company level for use by projects.

8.3 Parts Development Organizations

There are at least three alternative types of parts development organizations; they are depicted in Figure 8-1

¢ An independent or autonomous parts group, i.e., a group that develops reusable software inde-
pendent of any particular project

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OTHER TOPICS

¢ A project-level parts group, i.e., a group within a particular project or program that develops
reusable software -

e A project-directed parts group, i.e., an independent parts group that solicits inputs from and
coordinates with projects about needed reusable software

Each approach has pros and cons. The first approach, i.e., an independent parts group, is able to concentrate
reusable software development expertise in this group and thus, increase the quality of the compcnents that are
produced. The problem with this approach is that there may not be enough interaction with the projects who
are the ultimate customers, thus, components may be produced that will find little use within the projects they
are aimed at.

A project-level parts group will generally be able to produce components that are useful to and needed by the
project on which they were developed, but they may find little use outside of that project. Additionally, this
type of parts group may have little experience developing reusable software, and may lack the resources for
parts development.

A project-directed independent parts group may be the best approach if the resources are available. With this
approach, the group is able to develop expertise in reusable software production, while maintaining close ties
with the projects who are the ultimate customers of the reusable software. This group, by virtue of its ties with
the projects, will be able to develop a better sense of the reuse potential of candidate software parts. This
should ultimately result in high quality, usable parts.

8.4 Configuration Management

Configuration management of reusable software is essential. It is critical that uncontrolled changes not be made
to reusable software parts. Decisions to chan_e parts that are under configuration control should rest with a
"configuration control board.” Errors should always be corrected. Enhancements/changes need to be
evaluated on a case-by-case basis. Changes to paris cad the 12=-ons for those changes should be documented;
this is often done in a software development file or notebook.

One way to facilitate configuration management is to place code libraries under the control of a parts librarian,
granting read access to all developers/users, and granting update privileges only to the librarian. This will help
eliminate the problem of "too many cooks in the kitchen.” The librarian would then be responsible for baselin-
ing all components.

When a component is placed under configuration control, all files pertaining to that component (not just the
code files) should be placed under configuration control. This includes the files listed in Table 8-1. The code
component should then be compiled and the object code tracked.

If a part requires modification, the librarian should "reserve” the files needed to make the modifications. The
files are "checked back in" when the modifications are complete, the part is successfully retested, and the source
code, documentation, and SDF are updated. When rebaselining a modified component, the modified files
should be placed back under configuration control; new files, if any, should be placed under configuration
control; the modified part should be recompiled and the object code again placed under configuration control.
Any other parts whose compilation is dependent upon the newly compiled part will also need to be recompiled.

Configuration control of reusable software is particularly important because of the widespread use that the
software may see. There must be a mechanism for notifying users when errors are discovered in reusable

107

FOUNDATIONS of SOFTWARE REUSE

OTHER TOPICS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS
AUTONOMOUS
SOFTWARE
PARTS PROJECTS
QROUP
APPLICATION

fS'IUDES J [PRODUCES _ [oarrs L0822 bY BULD s%l;r:l_réaz

PROJECT SPIN - OFF

PRODUCES R
PROJECT ‘ PARTS I
BUILDS R

APPLICATION
SOFTWARE
SYSTEM

PROJECT-DIRECTED

USED BY BURD (APPLICATION

. | " SOFTWARE
PARTS SYSTEM

Figure 8-1: Alternative Parts Development Organizations

Table 8-1: Items Under Configuration Control

o All source code files for component
¢ Test procedure

¢ Test plan

o All test code files

» Input data for tests

¢ Expected results for tests

o Test results

o Test utility files

software components. Other than this, configuration control requirements for reusable software do not really
differ from configuration control requirements for other types of softvare.

8.5 Maintenance

Maintenance of reusable components is of vital interest to those who may reuse software components. This
was the number one concern voiced at a conference on software reuse (Reference [39]). The scope of a reuse
effort has a direct bearing on the maintenance issue.

Maintenance can be performed by the parts development organization, by the parts user, or by a third party.
The cost of reuse increases if parts users must also maintain the parts; maintenance will require them to be-
come familar with the inner workings of the reusable components.

108

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OTHER TOPICS

If maintenance is provided outside of the using organization, there are special maintenance considerations that
must be kept in mind:

e Current holders of the parts must be notified when changes are made to the parts set (particularly
in the case of errors).

e There should be a feedback mechanism so that holders of the parts can provide inputs to the
developers.

8.5.1 Modification of Parts

During the lifetime of a part, requests may surface for both enhancements and corrections to reusable com-
ponents. Because it is anticipated that parts will see greater use than custom code, it is important that changes
be performed in a controlled and orderly manner. As previously mentioned, changes should be controlled by a
configuration control board (CCB). A CCB should contain representatives from all affected groups. For
example, on the CAMP program, the CCB consisted of the program manager and the heads of the application
task team and parts development team.

The purpose of a CCB is to review the requests for changes and determine the action to be taken. Requests
for changes can be categorized as (1) unique to the requesting project, (2) narrow in scope, (3) broadly ap-
plicable, or (4) an error. The CCB'’s decision should be based on the following factors:

e The scope of the change: Is it a minor change or a major one? Is it specific to the requesting
application or general enough to be relevant to other applications?

» Purpose of the change: Is it to correct an error (errors should always be corrected) or provide an
enhancement?

¢ Resource constraints

There are several possible outcomes:

o The baselined parts can be modified. This course of action is appropriate if it is determined that
a modification is appropriate not only for the current application, but also for other applications.
For example, during the CAMP program, all the Kalman filter packages were modified because it
was found that the generic parameters did not allow sufficient flexibility.

e Additional parts can be created, i.e., parts variants can be created.. The algorithms for some of
the parts may make assumptions that are not appropriate for the current application. For ex-
ample, the CAMP navigation parts take advantage of the fact that, for small angles, the sine of
the angle is approximately equal to the angle itself. This assumption increases efficiency by
eliminating the need to calculate an arcsine and produces satisfactory results for some missile
applications. This assumption, however, was not appropriate for one particular application and
potentially not for others as well. Consequently, new parts were created which used the arcsine
instead of the approximation.

¢ The user can modify his own versions of the parts. In some cases, the required modifications
may be specific to that application, and therefore, do not warrant modifications to the baselined
parts. In these instances, the user can modify his own versions of the parts as required. This
would be the required course of action if no maintenance were provided with the parts. Addition-
ally, it has been advocated that an application development team should always take control of
the version of the parts that they use. This has both pros and cons. On the positive side, it gives
the development group control over changes to the parts. On the negative side, it can increase
their costs by forcing them to become intimately familar with the parts if a change is needed.

109

FOUNDATIONS of SOFTWARE REUSE
OTHER TOPICS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

8.5.2 Proliferation of Part Variants

Proliferation of parts with minor variations should not be encouraged as it becomes difficult for users to deter-
mine which variant best fits his requirements. This is problematic because, in most cases, requirements
specifications for the parts are not captured via a formalism that allows all of these variations to be accurately
identified, thus it becomes difficult to distinguish between similar parts. Some researchers have suggested that
families of parts be cataloged, and that a mechanism be provided that will generate the variants, rather than
individually cataloging each of the variants (Reference [11}).

8.6 Ada Language Considerations

Reusability includes the ability to transport code between different machines and the ability to transport code
between applications. In the case of Ada, standardization on a single language and prohibition of subsetting or
supersetting of the language have largely achieved the goal of machine transportability. Complete Ada applica-
tions have been transported between widely disparate machines, with minimal changes to the source code. The
success of this type of reusability is, of course, limited by machine dependencies of the code and the type of
application involved. Reusability goes beyond transportability to encompass new applications rather than just
new platforms.

The Ada language supports, but does not guarantee, software reuse. Ada was designed to support sound
software engineering principles and includes features that facilitate the development of reusable components,
such as generic units, separate compilation, and the package structure. There are portions of the current Ada
standard that inhibit the ability to transport and reuse code between applications; some of these were discussed
in Reference [31]. Not all of the problems are with the language itself; some are with the compilers and the
validation process. For instance, most Ada compilers lack global optimization, and certain constructs tend to
generate inefficient object code (e.g., generics, tasking). The compilation errors encountered with validated
Ada compilers also suggests that the Ada Compiler Validation Capability needs to perform more stringent
testing; it is important that all features of the language be adequately tested before a compiler is validated.

Several types of problems have been identified.

¢ There are instances in which the language standard leaves to the compiler implementor key deci-
sions which can affect the ability of a compiler to handle code developed for reuse (e.g., object
code generation of generic units).

» The Ada validation capability does not adequately test all of the standard Ada features which are
required for implementation of reusable software (i.e., validated Ada compilers can generate in-
correct object code or fail to prodice object code).

» The Ada language standard lacks certain specific features which could further enhance reusability,
especially for the design of special interfaces (e.g., the ability to pass procedures)
Suggested changes to the Ada language were presented in Reference [30]. These and other proposed changes
are being addressed by the Ada revision process.

The complexity of the Ada language has been sited as an impediment to software reuse. It has been suggested
that the wide range of choices provided the user results in difficulty in incorporation of reusable code in new
applications. That is, it is difficult to predict the implementation approach that will be taken in any given
application, and hence it is more difficult to develop reusable components that will meet a user’s needs (Refer-
ence {17]). This problem can be at least partially ameliorated by getting developers to consider available reus-
able components early in the development process and by strict adherence to standards during both parts
development and application development.

110

FOUNDATIONS of SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OTHER TOPICS

8.7 Tools

The correct tools can play a critical role in enhancing software development productivity. This is true in the
development of both custom and reusable code. Tool support for the development of reusable software is
basically the same as tool support for the development of custom software, except in the area of domain
analysis; tool support for domain analysis was discussed in Chapter 3, Paragraph 3.8.

One area that bears special mention is the area of documentation. Automated document production tools that
operate on a centralized data dictionary can facilitate the development of documentation for software systems
that Incorporate reusable components. If reusable components are used “as is”, their documentation can
generally be referenced rather than reproduced. If the components require modification, updated documen-
tation will also be required. An automated documentation system operating off of a data dictionary can make
this task much simpler than manual documentation production. The software developer would only have to
enter the modifications into his version of the data dictionary in order to see them realized in the final docu-
ments.

FOUNDATIONS of SOFTWARE REUSE
OTHER TOPICS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

112

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS APPLICATION of REUSABLE SOFTWARE

SECTION I
APPLICATION OF REUSABLE SOFTWARE

113

APPLICATION of REUSABLE SOFTWARE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

114

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OVERVIEW

CHAPTER 9
PARTS USE OVERVIEW

Software developers are increasingly faced with complex and changing requirements, staffing shortages, es-
calating software costs, projects that cannot be completed within schedule and budget, and products of ques-
tionable quality. There is no one solution to all of these problems, but software reuse has the potential to at
least partially ameliorate them. The introduction of software reuse as part of the solution poses additional
challenges to the software developer, i.e., it is a change from "business as usual'".

Software reuse is feasible, but in order to maximize the benefits of reuse a systematic approach must be taken.
Reuse must be planned rather than just allowed to happen in an ad hoc manner — ad hoc reuse has been
practiced for many years without solving the so-called software crisis.

Reuse must be kept in mind from the very earliest stages of the software/system lifecycle. In fact, reuse should
be considered during the proposal and pre-proposal stages of a project rather than waiting until development
begins. It is generally too late to make widespread use of reusable software components if they are not con-
sidered until the coding phase of a project — by then, too many decisions will generally have been made that
preciude the use of many available software components. The extent to which reusable components can be
used in an application will be affected by decisions made during the design of both the reusable parts and the
new application.

Although there are potentially significant benefits to software reuse, there are also many unresolved issues in
parts-based application development. Developers need to be aware of the risks and issues associated with a
parts-based approach to software engineering. Early identification of the issues can help a project avoid
problems later (Reference [30)).

Potential reusers need to be aware that the use of certain language features alone does make not make
software reusable, e.g., generic code units are not necessarily reusable. The danger of this misperception is
that an application developer may unwittingly reuse code that was not designed with reuse considerations in
mind and have a very negative experience with "reuse". Other items developers need to consider are the
following:
» The limitations/maturity of the compiler being used, i.e., can it handle the constructs used in
reusable software component?

¢ The extent to which the available parts will actually meet the project's needs
» The efficiency of both the parts and the compiler with respect to the project’s requirements

¢ The maintenance responsibility of the parts’ supplier

Software parts can be used in a variety of applications: new full-scale engineering development (FSED),
benchmark development, prototypes, or as examples for new custom code development. In the material that
follows, we assume the parts are being used in an FSED project, although in reality there would be little dif-
ference in the required activities.

In the remainder of this section, each of the major software development lifecycle activities will be examined,
and the impact of reuse-based software development on that activity will be discussed. The remainder of this
section is organized as follows.

115

APPLICATION of REUSABLE SOFTWARE
OVERVIEW DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

¢ Planning for Reuse-Based Development: This chapter discusses the impact of software
reuse on project planning. .

¢ Requirements Analysis: This chapter covers the effect of software reuse on requirements
analysis for a new application.

o Preliminary Design: This chapter covers unique features of a preliminary software design ef-
fort that includes reusable software parts.

¢ Detailed Design and Coding: This chapter covers the aspects of detailed design and coding
that are unique when software reuse is a part of the software development process.

o Testing: This chapter covers the special testing considerations of applications incorporating
reusable software.

116

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PLANNING for REUSE-BASED DEVELOPMENT

CHAPTER 10
PLANNING for REUSE-BASED DEVELOPMENT

Software reuse is not yet commonplace, thus not all of the reuse-related project planning issues can be defini-
tively addressed. Some areas that require special consideration are identified below.
o There is always the possibility that parts anticipated for use won't work out. How can the
developer account for this risk factor?

e How can the developer account for the cost of identifying, locating, analyzing, evaluating, and
incorporating reusable components into the new application?

« What will it cost to train software engineers in effective software reuse? How long will it take
them to "come up to speed™

o Will the benefits of software reuse be realized on the first project? If not, how can the additional
cost be justified to the customer? And to management?

« What additional planning is needed for effective software reuse?
+ What additional tools are needed to facilitate and enhance software reuse?

o What are the contractual ramifications of software reuse?

10.1 Cost Factors in Reuse-Based Software Development

A reuse- or parts-based approach *+- - ftware development can result in substantial savings, but there are also
associated costs, thus, it must be _onsidered during the cost estimation process. The real-time embedded
software community currently ..cks sufficient historical data for estimating the cost of reuse-based projects.
Consequently, our existir 4 cost estimating models may not be adequate. In costing a project that will incor-
porate reusable software parts, we need to consider not just the lines of code that will not have to be written,
but also the cost of reuse. Assuming the availability of well-developed reusable components, we need to ac-
count for at least the factors listed below. Other factors may result in additional costs or savings.
e Cost to locate potentially applicable reusable component (RC) sets

¢ Cost to evaluate those components

e Cost to locate and retrieve specific reusable components

+ Cost to modify and incorporate the RCs

¢ Savings of not developing the RC

e Savings of not having to document the RC and develop new test procedures, code, etc.
¢ Savings in integration

¢ Savings in maintenance
These factors are difficult to estimate, hence it is not straightforward to develop a cost estimate for a project
that is planning to incorporate significant amounts of reusable software. Research is underway in this area at
several organizations (e.g., see Reference [20]).

10.1.1 Factors Increasing Cost

If the reusable software components were not developed in accordance with rigorous documentation, coding,
and testing standards, then additional costs may be incurred. For example, if it is necessary to document
inadequately documented reusable software, the cost of reuse is increased. In mission critical applications, it
will be necessary to test the reusable parts at some level even if they have previously been tested. The cost of

117

APPLICATION of REUSABLE SOFTWARE
PLANNING for REUSE-BASED DEVELOPMENT DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

this activity will be lower if test procedures and code are available with the reusable parts. If it is necessary to
develop test procedures and test code, the cost of reuse may go up sharply because the developer will have to
determine what to test and how to test it. Differences in development standards (e.g., coding or design stan-
dards) between reusable parts and the new application can also increase the difficulty and cost of using parts in
a new application. The parts may require modification, or additional code may be needed in order to interface
the new application code with the parts. An investment is required to train software engineers in developing
software that incorporates reusable parts.

10.1.2 Factors Decreasing Cost

Most of the factors that decrease the cost of applications development when a reuse-based approach is used
have previously been discussed. They include items such as less code to develop, less testing and rework, less
documentation, and lower maintenance costs resulting from the use of rigorously tested and previously used
software.

10.1.3 Weighing the Factors

The benefits of reuse do not always outweigh the costs. If a significant effort is needed to modify a reusable
component in order to obtain the required functionality or to bring a part up to project standards, it may not be
cost-effective to reuse in that instance. The investment may be warranted if there are expected payoffs during
maintenance.

The perceived cost of reuse is as important as the actual cost. A software developer must perceive the cost of
reuse (whether it's code, code templates, design, etc.) to be less than the cost of reproducing the components
himself (Reference [26]). Some researchers (Reference [43]) have postulated that if the perceived cost to reuse,
including time to modify code that is not quite a fit, is greater than 70% of the perceived cost to develop from
scratch, an engineer will develop custom code for the application. Software engineers tend to over-estimate
the effort to reuse code and under-estimate the effort to develop code from scratch. Others (Reference [21])
claim that even if you break even in development time, you still come out ahead because of the increased
quality of the software that results from using presumably well-tested software parts.

A means is needed to calculate the cost of reuse for a given part (in addition to determining project-level cost
estimates for reuse-based application development). This will provide projects with data needed to make a
decision whether to use a part and modify it to meet their application, or develop from scratch. There has
been some work in this area (References [10] and [35}), but much remains to be done to develop effective and
accurate estimation techniques. As yet, there is little firm data on the cost of reuse.

One thing is known — reuse is not free. For example, if 20% of the code for a new application is expected to
come from reused parts, that does not mean that development costs for the project will decrease by 20%:
¢ Coding generally consumes only about 20% of a project’s resources, thus, a 20% code reuse level
will generally not result in 20% cost savings for the project.

» There are costs associated with reusing software, such as the cost of identifying, locating, and
examining it, and the cost of testing and integrating it with the custom-built code.

10.1.4 Payback from Reusable Software

It is too early to determine exactly when the payback will occur in software reuse. There is some data available
in commercial, business-type applications, and some estimates of the benefits of reuse for mission-critical ap-
plications have been made, but there is not yet sufficient data «vailable for RTE applications to determine the

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PLANNING for REUSE-BASED DEVELOPMENT

extent and timing of the payback for software reuse. Although there will be gains during software develop-
ment, and greater gains will occur as support environments mature and the cost of reuse detreases, we must
also look to the maintenance phase for payback. There we should see increased reliability in the products
because of the use of extensively tested software parts. Tracz (Reference [41]) reports that "Maintenance cost
reductions of up to 90% have been reported when reusable code, code templates, and application generators
have been used to develop new systems.” (Note: These results were not necessarily for RTE applications.)

We need to explore ways to maximize reuse and reduce its cost. Cost reductions can be accomplished through
training and through the development and deployment of tools that support a parts-based approach to software
development. Some of these issues were explored during the CAMP program, including prototype develop-
ment of an integrated set of facilities to support parts-based software development (References (29, 30]). Other
work has been done in these areas as well, e.g., STARS (Reference [23]), Army RAPID (Reference [42]). These
Issues are discussed in Section Ill, Maximizing Software Reuse.

10.2 Management Support

Management and customer support for software reuse is critical to its success. These two groups may have
many of the same types of concerns about software reuse. Customers should realize that with software reuse
there is the potential for higher quality products at lower cost and in a shorter delivery cycle than when the
product is custom crafted. Management needs to realize two things:

» They can develop a competitive advantage by developing and using reusable software in their
product lines (assuming that commonality exists and can be developed in a reasonably cost-
effective manner).

» The industry as a whole can produce higher quality products if the industry as a whole develops
and uses software parts.

Once the benefits of software reuse become apparent, it is not clear that the DoD or any other "umbrella”
organization will need to provide incentives to encourage software reuse — the organizations will see that reuse
Is in their best interests. In the interim, it may be necessary to provide incentives to developers because of the
increased cost of developing reusable software and the increased risk of incorporating it into new applications.
The risk will diminish over time as the technology and methodologies that support reuse-based development
emerge and mature.

The conversion to a parts-based approach to software development will require cultural changes as well as
technology development. Software engineers are not taught to reuse software, they are taught to reinvent it.
As Jean Sammet pointed out in Reference [36), "Ever since the second square root routine was written, the
programming field has lost adequate control of reusability." The conversion of software developers to a
reuse-based approach must begin with their coursework and be encouraged by management guidelines and
practices.

The effort required to develop high quality software needs to be viewed as an investment rather than as an
aftertt:ought in the overall system development. Once the investment is made, the development costs can be
amortized by reusing the software in additional applications.

Project managers need to have confidence that when they are asked to "sign up" to software reuse in their
projects, that they have a reasonable chance of success. Once they are convinced of the value of software
reuse, they need to be willing and able to make the investment to train their software engineers in both the

119

APPLICATION of REUSABLE SOFTWARE
PLANNING for REUSE-BASED DEVELOPMENT DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

development and use of reusable software. Management needs to be willing to provide the resources needed to
develop a support group that can assist projects in the transition to parts-based application development.
Projects are constrained by their schedules and budgets and cannot be expected to fully embrace a technology
that is still risky because of its early stage of development. Management and customers must be u;illing to share
the risk with these projects.

Some of the typical risks and concerns of management are enumerated below.

e How do we know that the reusable components we think we can use will really work in our
application (i.e., if we base our bid on the assumption that 20% of the software will be derivable
from existing software components, what do we do if the parts don't actually work out?)

» What if there are errors in the parts? Who will maintain them? If the project has to maintain
them, the cost of reuse is increased.

» What are the legal ramifications of reusing software developed outside of the project.

Confidence in software reuse technology and methodologies can only be gained from success stories. Paper
studies and "toy" applications will not suffice for the projects that have tight schedules and requirements con-
straints. Realistic test programs can provide the type of environment where many of the issues or problems
assoclated with software reuse can be worked out, and it can be demonstrated that it is viable, cost-effective,
and ultimately beneficial. The DoD can facilitate the move to software reuse by funding these types of
demonstration projects.

The CAMP 11th Missile application development is an example of this type of effort. The goal of this effort
was to validate the concept of parts use in real-time embedded applications. The 11th Missile application
entailed the redevelopment of missile guidance and navigation subsystems in Ada, using the CAMP parts. This
effort was based on an existing application that was implemented in JOVIAL. It required the development of
DoD standard documentation, as well as software development and hardware-in-the-loop (HIL) testing. It was
targeted to a MIL-STD-1750A processor. The existence of the HIL test environment made this an attractive
application to parallel. The development effort demonstrated that Ada was rich enough to allow implemen-
tation of virtually all of the required functionality (the application required only 21 lines of assembler code to
accommodate existing system idiosyncrasies) and also demonstrated that reusable software parts could be incor-
porated into a new RTE development effort. The 11th Missile development effort also highlighted the risks
associated with the application of new methodologies (i.e., software reuse in RTE applications). Although the
1750A-targeted Ada compiler was validated, many problems were encountered that would have devastated the
schedule and budget of a production project. Most of these problems resulted from compiler immaturity; a few
of the types of problems encountered are enumerated below.

e Many of the generics had to be manually instantiated because the compiler could not correctly

process the complex ge~.erics used in the reusable software parts.
e The tasking overhead was prohibitive.
e The compiler was not able to generate ‘object code that was efficient enough for the navigation
subsystem to run in real time.

The problems encountered and the results obtained during the 11th Missile application development effort are
detailed in Reference [31] and summarized in Appendix II. Although many valuable lessons were leamned from
this effort, it also highlights the importance of establishing testbed programs that can act as pathfinders and
facilitate maturation of the required technology and methodologies.

120

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PLANNING for REUSE-BASED DEVELOPMENT

10.3 Additional Lifecycle Activities

Figure 10-1 depicts the software development activities within the context of system development. Planning
for software reuse needs to occur early in the software development process.

SYSTEM DEFIMITION SOFTWARE DEVELOPMENT SYSTEM INTEGRATION
SYSTEM SOFTWARE
REQUIREMENTS REQUREMENTS SYSTEM INTEGRATICN
ANALYSES TESTNG
PRELIMNARY
DESIGN

SOFTWARE SYSTEM
TESTNG

Figure 10-1: Software Lifecycle Activities

A software development plan should identify what the project is going to do with respect to software reuse. In
fact, DOD-STD-2167A (Defense System Software Development, see Reference [16]) specifically requires the
developer to call out the use of non-developmental software (NDS), this is any software, including reusable
software parts, that is incorporated into the deliverable software but that is not developed on the project.
Obviously, not all of the reusable software that will be used may be known at this early stage in the project, but
the plan can outline a general approach to software reuse, such as the sources of components, what will be
done to evaluate the components, and the target range of reusable components that will be incorporated into
the new application {e.g, 10% or 50% or 90%). The fact that NDS is called out in the SDP highlights the
importance of early planning for software reuse.

There are three majo: additional activities that occur during a reuse-based application development effort:
¢ Refinement of the domain analysis (if there was one)

e Project-specific commonality analysis and component development

 Application of existing reusable software components (this includes identification, evaluation, and
incorporation of existit g components)

121

APPLICATION of REUSABLE SOFTWARE
PLANNING for REUSE-BASED DEVELOPMENT DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

10.3.1 Refinement of the Domain Analysis

Refinement of the domain analysis should include an analysis of the new application to determine if it fits the
existing domain model. If it does not, refinements or additions may be needed to the model, as well as to the
accompanying parts set. If there was no initial domain analysis and domain model development, a preliminary
analysis and model can be developed based on the new application. As additional applications are developed,
they can refine this "first-cut”.

10.3.2 Project-Specific Commonality

During the course of development, projects need to examine the reusable components that are available, and
use those that will fit reasonably well into their applications. They should also identify commonality within their
application, as well as commonality between their application and others that may be developed within their
organization. That is, essentially, they should revisit the domain analysis and try to identify additional candidates
for reusable software components. Identification of commonality within the new application and development
of components to "cover" this commonality are often overlooked in the planning stages, although they fre-
quently take place on an ad hoc basis. The components developed to satisfy application-level commonality
may be either locally or globally reusable, i.e., they may find use only within the current project or they may be
reusable across a broad spectrum of projects. This was also discussed in the guidelines in Paragraph 5.6. Lo-
cally reusable components should be submitted to a project library for use by other project personnel. Reusable
components with broader applicability should be submitted to a higher-level parts catalog or library for possible
use by other projects.

Component libraries can and should be put in place at different levels within the software development com-
munity and within organizations. For example, a DoD-wide library may contain parts that are of general
interest and usefulness {e.g., window and menu managers, plus domain-specific parts for domains such as
avionics or armonics), while a company library may have parts that contain proprietary algorithms and parts
that are more specific to a particular company’s product line. A project library may contain parts that are
widely used within a particular project, but that may not be widely applicable outside of that particular project.

As a project or reuse group develops reusable software components, they need to be propagated up to the next
higher level component library in order to get them into circulation and accessible by other projects. This
should lead to the development of a rich and useful parts set that will meet the needs of future application
developers.

Although projects are frequently the best source of reusable software (or, at least, of ideas for reusable
software), they frequently do not have the resources to develop parts themselves. Ideally, a software reuse
support group would be available to assist in the development of the newly identified common components,
thus decreasing both the risk and cost to the project.

10.3.3 Application of Reusable Components

The first step in the application of existing software components to a new application effort is to identify parts
sets that may be available in-house, commercially, or from other sources, and determine the domains they
cover and which of them bear further investigation. For example, if avionics software were being developed
and the only parts sets found dealt with banking applications, there would be a strong contra-indicator to parts
use for that particular project, whereas if missile flight software parts were located, they would bear further
investigation because of the overlap in the two domains. Once potentially applicable parts sets and parts are

122

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PLANNING for REUSE-BASED DEVELOPMENT

located, additional information can be obtained on the developers, reason for development, the type of main-
tenance that will be provided, use restrictions (Are the parts copyrighted or in the public domain? Can they be
used freely or are there other restrictions in their use?), and the cost, if any, of getting the parts. This, ideally,
should be done prior to software development (i.e., during the proposal stage, or during system requirements
development).

Figure 10-2 illustrates a parts use and development cycle. The TOMEX project, which is a new development
effort, will initially go to an existing software library and obtain applicable components. During the develop-
ment effort, certain portions of the application may lend themselves to development as reusable components.
These components will initially reside in the project library, but may eventually be submitted to the next higher-
level library (e.g., a company library) for use by other projects.

PARTS
CATALOQ

Figure 10-2: Parts Use and Development Cycle

Many issues may arise during parts use. For example, if parts from more than one source are used, do they
need to be integrated? Do they have a compatible structure? Who is legally responsible for the correctness of
the parts? Are there proprietary rights that need to be preserved when using the parts? Are the parts covered
by distribution/export restrictions? How should reusable parts that are incorporated into a new application be
documented? How shouid they be tested? Management may have some concerns about incorporating reus-
able software into a new application. For example, if the contract is "time and materials,” they may think
profits will be lowered if they incorporate reusable software because the development effort may not take as
long, and may not require as many people. Once software reuse becomes established in the software develop-
ment lifecycle, project development time will be shortened, allowing more projects to be undertaken.

123

APPLICATION of REUSABLE SOFTWARE
PLANNING for REUSE-BASED DEVELOPMENT DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Another management concern is that software reuse may seem risky, particularly initially. There may also be
concerns about quality and the fact that the current developers are staking at least part of their reputations on
someone else's software.

10.4 Pitfalls in Software Reuse

There are several pitfalls to be aware of in parts-based software development. Most of these issues are dis-
cussed in greater detail in subsequent chapters of this section.

¢ Immature compilers: Compilers used with parts-based application development must be able to
properly handle the constructs used in the reusable components. This requires up-front analysis
of the compiler before a project commits to software reuse. These compilers must also perform
needed optimizations. For example, if the compiler does not optimize out unused code, an ap-
plication may become too large for the target system. This is because reusable code components
may have more operators, etc. than are needed by the current application, resulting in a sig-
nificant portion of the reusable code being unused.

o Compiler differences between the development system and the target system: Again, a project
needs to verify that both the development compiler and the target compiler will adequately handle
the reusable software that is planned for inclusion in the new application.

» Reuse of code that is not really reusable: Certain programming language features can facilitate
the development of reusable code, but there is no guarantee that all software that incorporates
those features will be reusable. For example, a generic unit is not necessarily reusable; it may
have too many environmental/application dependencies built in. This can lead to less than
desirable results with code segments that developers think are examples of reusable software.

* Incompatible modifications made to parts in use: If the reusable components are accessed from a
central library rather than put under project control, they could be modified in ways that would
make them incompatible with the current application.

¢ Performance/functionality "surprises”: If an adequate evaluation of candidate reusable com-
ponents is not performed prior to use, there may be costly "surprises.” For example, components
that appeared to be close matches requiring only simple changes may, in fact, require major
rework to fit them into the application.

10.5 The Role of a Reuse Support Organization

The role of a reuse support organization is dependent upon the scope of the reuse effort. It can range from
someone simply entering component information into the library to a significant staff that not only checks code
and documentation for compliance with standards, but also performs independent testing, assesses the value of
parts, assists users in the use of parts throughout the lifecycle, develops new parts, and provides training. As
the scope broadens, the need for, and demands on, a support staff grow. Such a staff could be invaluable in
the technology and cultural transition from custom code development to widespread software reuse. They
could provide the training and support needed to alleviate risk to projects that are considering a parts-based
approach to software development.

In general, some of the basic functions that such a group can perform are as follow:
 Assist users in locating reusable software resources

¢ Assist in the use of reusable software
¢ Adapt project-developed software for reuse
« Maintain the reusable software (i.e., make error corrections, enhancements, etc.)

¢ Develop additional reusable software identified either by projects or by additional domain analysis

124

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PLANNING for REUSE-BASED DEVELOPMENT

¢ Obtain feedback from users in order to fine-tune the software parts collection and the library
¢ Provide training in parts-based software development '

10.6 Tools for Reuse

Tools that support reuse-based application development can decrease the cost of reuse and increase produc-
tivity. Although there are many types of tools that can support parts-based application development, a
software repository, library, or catalog is an essential cornerstone in any software reuse effort. It provides a
central location for information about available software components, and can be used in virtually all activities
throughout the software development lifecycle (see Figure 10-3). Libraries are discussed further in Chapter 17.
A reusable software repository can facilitate —

» Identifying candidate software parts for use in a new application

¢ Retrieval of software parts
¢ Use of software parts

o Evaluation of candidate software parts. It may contain information about other projects that have
used the parts and their experience with them, as well as performance data and operating restric-
tions.

¢ Notification of users about changes to the parts

DEFIN‘HON
Whatis availaIio’
How can the requirements gesg‘aw
be lalored lo maximie reuse?
Whaparts can we reuse?
How much naw code is required? anhmw
How much modification doss # requine? What oo is avaliable?
How much lesting Wil ba needed? How can new design maximize reuse?
Howwel wil the pats ft? \
PAR'Z‘S . \
: Where are the parts DETALED
cwxwt.oc b —
What else is available?
How can design maximze revss?

Where are parts located?

Whal elss is available?

Are parts compatble wih new code?
Can they be easily inlegraied wih
other parts and application code?

St

Figure 10-3: The Role of a Software Library in the Development Lifecycle

125

APPLICATION of REUSABLE SOFTWARE
PLANNING for REUSE-BASED DEVELOPMENT DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Tracz (Reference [41]) points out that special tools are not needed to get started in a reuse program; a basic
catalog or database of parts will suffice. Almost all researchers have indicated that cataloging tools and tech-
niques, and a means of describing software are essential to the success of software reuse from the end-user's
point of view. Lubars (see Reference [26]) has said that "the most significant technical barrier to code
reusability, is the problem of finding the desired piece of code.” This problem decomposes into 3 steps: "(1)
realizing that the code exists..., (2) finding the general location of the code ..., (3) finding the particular location
... of the code" The Japanese have had fairly good success even with simple keyword indexing of available
parts. As component libraries increase in size, increasingly more complex mechanisms may be needed to
locate and evaluate components. Parts cataloging and attribute development continue to be active research
areas (see Reference [18] for examples of different approaches).

Tools that assist in the analysis and evaluation of reusable software components, and software composition
tools that facilitate the integration of reusable components with custom code will also be useful in a parts-based
application development effort. Tools that assist with documentation, particularly tools that eliminate redun-
dancy in document production and automate the document production process will make software reuse more
attractive. Detailed discussion of tool support for reuse-based application developed is deferred until Section IIi,
Maximizing Software Reuse.

10.7 Compilers for Reuse

Although compilers are software tools, they warrant special attention. When a decision is made to systemati-
cally reuse software on an application, it is critical to determine if the selected compiler can properly handle the
constructs used in the reusable software components. With Ada, compiler validation is necessary but it is not
sufficient to ensure correct compilation of Ada source code. For example, on the CAMP parts usage
demonstration, the development team used a validated Ada 1750A cross-compiler and found that the compiler
was not able to correctly handle many of the CAMP Ada generic parts. These were parts that contained valid
Ada syntax and that had been tested extensively on another validated compiler. This situation significantly
increased the effort required to complete the task — many of the generic units had to be manually
instantiated, test cases had to be developed and submitted to the compiler vendor, code had to be retested as
new versions of the compiler were received from the vendor, and finally, code had to be modified when it
became apparent that some of the problems were not going to go away. This seems to be primarily a maturity
problem and will undoubtedly become less of a problem as Ada compilers mature. Projects with tight schedules
and budgets would do well to benchmark their intended compilers BEFORE the project begins, and to develop
a close working relationship with their compiler vendor.

Benchmarking for specific capabilities is a valuable way to identify compiler inadequacies with respect to reus-
able software, although benchmarks emphasizing the needs of software reuse in the RTE community are not
prevalent. During the CAMP program, a benchmark suite was developed to test Ada compiler performance in
the area of complex generics. It consisted of a series of compilations (based on CAMP packages) which require
the compiler to process complex uses of Ada generic units (see Reference [12], as well as Chapter 16). These
and similar tests are needed in order to verify that the compiler can at least correctly compile the types of
reusable components that may be used.

126

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PLANNING for REUSE-BASED DEVELOPMENT

10.8 Maintenance and Configuration Management

Maintenance of reuse-based applications differs from maintenance of custom software in that there may be
some question as to who performs the maintenance. Once changes are made to reusable parts, the original
developer is generally no longer responsible for the correct operation of the code. In fact, he may never have
been responsible for maintenance.

If errors are uncovered in an application, it will first be necessary to determine if they occurred in the reused
code or in the new code. If the error was in reused code and the code is supported, the trouble reports will go
to the parts maintenance organization, otherwise the development group will need to provide maintenance. If
the reusable software is supported, the following criteria can be used for deciding when to modify the part (i.e.,
take the code and change it yourself), build your own code, or see the parts development team and request a
part enhancement:
o If the requested modification is specific to the application under development, then the applica-
tion team should modify the part as needed or build a new part to meet their needs.

o If the proposed enhancement may have broad applicability, then the reuse support team should
make the modification, and release the new version of the part for general use.

It is important to carefully document any project-specific changes that are made to reusable software parts
because (1) if errors are uncovered during testing or deployment, this documentation can help pinpoint whether
the problem resulted from the original part code or from tailoring; and (2) the application developer may want
to suggest changes to the parts developer based on changes that were required for the application.

A major issue that arises in parts use is whether a project should obtain its own copies of the reusable software
and put them under project configuration management, or if it should, if possible, compile out of the central
software reuse library. Although there is conceptual appeal to working out of a central library and avoiding
duplication of code, etc., the reality of the situation is that it is often best for a project to take control of their
own copy of the reusable software that they plan to use. This provides them with the freedom to modify the
parts as they see fit, relieves them of having to rely on a third party for updates, and protects them from
"undesirable” modifications to the parts.

Two situations that need to be considered when deciding whether or not to "take control of the parts" are
enumerated below.

o If a project has obtained its own version of the reusable software parts that are being used in its
application and new versions of those parts are released by the supplier, how will the new ver-
sions be handled? What if the project has made changes to their versions, but the newly released
versions contain desirable enhancements or error corrections?

o If a project has not obtained its own version of the parts, and "new and improved” versions are
released that supercede the versions in use on the project and that are not completely compatible
with the project's application, what will be done?

If automated tools are used to customize reusable software (e.g., component constructors), the application
developer should generally go back to the tool for maintenance and modifications rather than making changes
manually. If the changes are made manually, it may be cost-prohibitive to ever go back to the original tool to
regenerate the code.

127

APPLICATION of REUSABLE SOFTWARE
PLANNING for REUSE-BASED DEVELOPMENT

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

128

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS REQUIREMENTS ANALYSIS

CHAPTER 11
REQUIREMENTS ANALYSIS

Software reuse can play a dual role during requirements analysis activities. Reusable software components can
be used in the development of prototypes for verifying requirements, as well as in the development of the
requirements for an FSED application. In this chapter, the concentration is on the impact of a reuse-based
approach on application development rather than on prototype developmer*.

During system requirements/design, system requirements are allocated to software, hardware, and firmware;
preliminary software and interface requirements may be formulated at this time, as well. During software
requirements analysis, those requirements should be finalized and documented. DOD-STD-2167A (Reference
[16]) calls for the development of a Software Requirements Specification (SRS). The interfaces that are
external to the major software components (in DOD-STD-2167A terms, this is a Computer Software Con-
figuration Item (CSCI)), should also be identified and their requirements documented; the Interface Require-
ments Specification (IRS) is used for this. From the software development perspective, the output from the
requirements analysis activity is the full set of engineering requirements for each CSCl in the system.

Requirements should be kept free from design decisions. Although this guideline should not be new to anyone,
it is not always followed, and it is particularly important when a reuse-based approach to software development
is used. Software reuse will be maximized by delaying design decisions until the requirements are finalized, and
information can be gathered on available parts and be used to drive the design. Introduction of design decisions
too early in the development process can result in a significant decrease in potential reuse for the project. This
is because many design decisions will preclude the use of some parts, although the parts themselves may ac-
tually meet the requirements.

The major costs associated with software reuse during software requirements analysis activities are those of (1)
locating parts sets, (2) identifying potentially applicable parts within those sets, and (3) identifying commonality
within the application.

11.1 Parts Identification

It is appropriate (and potentially advantageous) to begin parts identification during the proposal stage, but it is
not too late to start during requirements analysis. Parts identification cannot be delayed until coding! Although
it may sometimes be possible to incorporate some reusable software during coding, software reuse will be
maximized if it is considered much earlier. By the time a project reaches the coding stage, too many decisions
have been made that can interfere with the incorporation of parts. If parts are identified early in the develop-
ment process, the design can incorporate them from the beginning rather than requiring retrofitting to incor-
porate them later. In reality, parts identification will take place throughout requirements analysis, architectural
design, detailed design, and coding.

During requirements analysis and definition, available parts sets should be identified and examined for poten-
tially applicable parts. There is no single source of information on available parts sets. Parts sets may be
available from commercial developers, from various government agencies, from private organizations, or from
in-house parts developers or other projects. Additionally, standard algorithms for various functions have been
documented in books and journals and can be implemented as utility parts sets. Examples of available parts
sets include the EVB GRACE™ nparts, Booch parts, CAMP parts (for the missile operational flight software
domain), and other software parts that have been developed as part of the STARS foundation area work (in-

129

APPLICATION of REUSABLE SOFTWARE
REQUIREMENTS ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

cluding editors, window and menu managers, etc.). Once the parts sets are identified, parts within those sets
should be identified for potential applicability to the current development effort. Early identification of parts is
needed so that —

¢ Realistic cost estimates can be formulated

¢ Requirements can be developed that maximize reuse. For example, in the selection of navigation

axes, a developer may decide to use an east-north-up frame of reference rather than an east-
north-down if there are reusable software parts to support the former but not the latter.

¢ Information about available parts can be used to sway design in a reuse maximizing direction

There is some risk associated with early identification of potentially applicable parts — the potential may not
be realized, thus requiring the development of custom code to meet the system requirements. This is a major
reason why parts must be bundled with sufficient information about them to facilitate the formation of an
informed decision early in the development process. The software developer cannot be expected to read every
line of source code before determining whether a part can, or should, be used.

11.1.1 Tracking Parts Use

In examining parts sets for potentially applicable parts, it is necessary to correlate software requirements with
available parts. This can be done either manually or automatically if the appropriate tools are available; con-
ceptually there is no difference. Manually, this can be done by producing a correlation table or by marking up a
copy of the software requirements document. This should be started during software requirements analysis.
and will continue through preliminary and detailed design. The correlation table can be produced by going
through relevant parts sets with the requirements document and determining if there are parts that may meet a
requirement, either fully or partially. In a fully integrated CASE environment, the mapping could be automated
so that as the user specified his requirements, the available parts sets would be searched for corresponding
parts.

At this point, the correlation between requirements and parts is preliminary — the parts identified at this point
may or may not actually work out. The amount of effort expended on this activity depends on the project
schedule and budget. The more work done up-front, the greater the potential of maximizing reuse and min-
imizing risk. Although the list of parts produced may not be a final usage list, it will help in later phases when
more information is needed on the parts.

11.1.2 Tool Support

Support tools can significantly decrease the cost and increase the success potential for would-be software
reusers. In the ideal world, the mapping between requirements and software parts would be fully automated, so
that as requirements were entered, they would be mapped to available software parts. The use of formal
requirements specification languages has been advocated by some researchers as one means to facilitate
automation of this mapping. Formal languages provide a more rigorous representation that would lend itself to
automated query formulation. The major drawback is the high cost it imposes on the software developer — he
must be proficient at the specification language, as well as understand the problem domain and know the
implementation language.

Other forms of tool support can be provided that span the gap between a completely manual process and full
automation. One of the major efforts during the CAMP program was a study of tc Jl support for software
reuse. This included the development of the concept of a Parts Identification, or Parts Exploration tool that
provides the user with high-level access into a parts catalog; it is intended for early identification of potentially

130

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS REQUIREMENTS ANALYSIS

relevant parts — it solicits requirements from the user and maps these requirements to available parts; it is
discussed in more detail in Chapter 18. :

11.2 Compiler Analysis

Projects must not only identify parts for reuse, they must also verify that their compilers can properly handle
those parts. It is critical that this verification take place as early as possible in the project. One "discovery”
made during the CAMP parts usage testbed effort (i.e., the 11th Missile development effort), was that a
validated compiler is not necessarily the same as a correct compiler. The 11th Missile development team
experienced compiler problems that would have devastated a "real” project with hard deadlines. Although
validated Ada compilers were used (more than one was tried), these compilers were unable, in most cases, to
handle the complex Ada generic units that were used in the reusable code. Many of the generics had to be
manually instantiated, i.e., they were un-genericized and made into non-generic subroutines. In their generic
form, the compiler either failed to compile them at all or generated incorrect code. The CAMP Benchmark
Suite (see Reference [31]) contains compilation benchmarks that can be used to assess the adequacy of a com-
piler for handling generics which are essential for reusable Ada software. These tests involve the compilation
and instantiation of a representative set of the CAMP parts.

Developers should also determine how unused code is handled by their compiler and linker/loader. It may
frequently be the case that not all of the subroutines in a reusable code part are required in an application. In
real-time embedded software systems it is undesirable and usually unacceptable to have unused code included in
the object module. If the unused code is not removed automatically, the developer will have to remove it
manually. This will increase the cost of reuse.

Much more work needs to be done in the area of benchmarking for reuse, as it is essential that a project be
aware of the capabilities and limitations of a compiler before planning to incorporate reusable software. This is
discussed in both Chapters 10 and 16.

11.3 Documentation

Although the reusable parts will be used to meet specific requirements that are documented in the software
requirements document for the new application, the parts themselves must also be documented (either by the
original supplier or by the project using them). If high-level parts are being reused and their requirements are
documented in an project-acceptable format, it may be possible to reference the requirements document for the
reusable part, rather than reproduce the requirement in the document for the new application. One of the
benefits of reuse is that the software should already be well-tested and documented. The need to (re-Jdocument
reusable software components acts as an inhibitor to reuse.

11.4 Summary

During requirements analysis, the main questions that the developer needs to answer with respect to software
reuse are as follow:

1. What parts sets are available?

2. What domains do these sets cover?

3. What functionality is provided by these parts?

4. Do they appear to meet project requirements?

5. Can the compiler handle these parts?

6. Is there commonality within the current application?

131

APPLICATION of REUSABLE SOFTWARE
REQUIREMENTS ANALYSIS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Figure 11-1 illustrates a typical scenario for requirements analysis activity under DOD-STD-2167A develop-
ment. The developer generally will have a system specification document and a software development plan
available at the beginning of software requirements activity. He may also have preliminary software and inter-
face requirements documents . During the requirements analysis activity, the developer must produce a full set
of engineering requirements for the software. This will occur regardless of whether the development is parts-
based or not. The additional tasks that will be required to accommodate reuse include (1) locating available
reusable software, (2) initiating a preliminary analysis for applicability and cost to reuse, (3) benchmarking com-
pilers to determine if they can adequately handle the types of reusable software that are being considered,and
(4) identifying commonality within the current application.

INTERFACE
PECUNEBVENTS
SPECFICATION

S

SPECIMCATION

S

Figure 11-1: Reuse and Requirements Analysis

132

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PRELIMINARY DESIGN

CHAPTER 12
PRELIMINARY DESIGN of PARTS-BASED APPLICATIONS

During preliminary design, the requirements documents are used as the basis for allocating requirements to
actual software components. In terms of DOD-STD-2167A (Reference [16]), the top-level design is developed
for each CSC (a CSC is comprised of CSUs, or Computer Software Units) and documented in a Software
Design Document (SDD), and the top-level design of the external interfaces is documented in the Interface
Design Document (IDD). During the design process, the integration test requirements for the top-level com-
ponents should be developed and documented in their respective software development files (SDF). Formal
qualification tests (to verify compliance with the requirements) should also be identified and documented. This
would be documented in a Software Test Plan (STP) under DOD-STD-2167A.

The extent to which reusable components can be incorporated into the design of a new application is, in part,
dependent on the architecture f the parts themselves. As previously discussed, parts that are designed for
ease of use, protection from misuse, tailorability, and flexibility will generally find more use than parts
developed without these types of goals in mind. For example, one design approach that has been used to meet
these goals is the layering of Ada generics — as long as the interfaces are maintained, the user can replace
virtually any part with custom code that he has implemented. This makes the part easy to use (if the user
accepts the part "as Is", there is little data that he has to supply), tailorable (he can replace portions of the
reusable software with his own custom implementation while still benefitting irom reuse of the higher level
structure), and flexible (the parts can be used in multiple situations, not all of which may have been anticipated
by the component developer).

Identification of potentially applicable reusable software components, which was begun during requirements
analysis, will continue during preliminary design. The designer must verify that the parts that have been iden-
tified can indeed fit into the application or that the architectural design can be changed (without changing the
requirements) to be compatible with the available parts. It is during this time that the potentially applicable
parts need to be examined in-depth to determine if that potential will be realized.

Tools can facilitate this examination and analysis. Some types of software tools that may prove useful include
the following:
» A catalog for obtaining detailed information about the parts

* A source code library so that code components can be examined
e Parts benchmarking software

o Other analysis aids (e.g., complexity analyzers)
The parts source code may be available directly through a catalog, otherwise an alternative means must be
provided for the software developer to obtain the source code. Ideally, parts developers should supply either
benchmark results or benchmarks so that sizing and timing data can be obtained. Analysis tools will facilitate
determining whether the available components meet sizing, timing, and complexity requirements. Reuse sup-
port tools are discussed in greater detail in Section [ll, Maximizing Software Reuse.

133

APPLICATION of REUSABLE SOFTWARE
PRELIMINARY DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

12.1 Parts Analysis

During preliminary design activities, there should be an in-depth analysis of the parts previously identified, i.c.,
the analysis should go beyond an examination of catalog entry information. In A-a sof. .. development
efforts, the package specifications are often considered the top-level design, thus, analysis of parts at this level
often equates to analysis of Ada package specifications and associated documentation. Parts should be ex-
amined with respect to the following items:

» Closeness of fit between the parts and the requirements of the new applic>*:c.,. The parts should
be examined to determine what, if any, modifications are needed to make the parts work in the
new application.

¢ Project coding, documentation, and quality standards
e Availability of test procedures, code, and data

¢ Reputation of the part developers

» Previous users’ experience with the parts

» The architecture of the parts versus the architecture of the application under development

12.1.1 Closeness of Fit

The application designer needs to examine the reusable components to determine how well they will fit into his
design. For example, are the functional requirements met by the reusable component? If so, does the design fit
into the new application? Are the performance requirements met?

The designer must determine if he will be able to use the parts "as is" or if he will have to modify them. If a
part does not fully meet a project requirement, the designer will need to determine the capability that will need
to be added, deleted, or modified. Modification can range from a several line code change to full replacement
of one or more package bodies. If modifications are required, the designer must determine the point at which
to switch from modifying the existing part to providing his own package that acts as an interface between the
reusable component and the custom code, or starting from scratch. If the existing part does not fit well into his
design, but meets at least some of his requirements, he will need to evaluate the alternative costs of "scaveng-
ing"” what he can from it or making it fit into the new application.

Examination of closeness of fit between parts and project requirements should include analysis of performance
requirements, such as speed/space efficiency and accuracy of generated results, and a determination of
whether these requirements are satisfied by available components. Several approaches may be taken:

¢ Benchmarking

o Inspection of the parts code itself
¢ Rapid prototyping

Benchmarking, or the review of benchmark results, can play an important role in the evaluation and selection
of reusable parts for inclusion in an application. A number of parts developers/researchers have recommended
that benchmark results be included in a parts catalog. This adds significantly to the cost of developing the
parts, but can reduce the cost of using the parts because the application developer may be less likely to select
an inappropriate part.

If benchmark data is not available with a part, the potential reuser can benchmark the part himself. This
obviously increases the cost of reuse, but it may be necessary if benchmark data is considered critical in part

134

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PRELIMINARY DESIGN

selection and is not available for the parts under consideration. Even if the parts have to be "tweaked" in order
to use them in a new application, it is generally worthwhile to use reusable code because of the increase in
reliability and the decrease in effort over the lifecycle to produce the final product. Reuse is not an all or
nothing proposition!

Code inspection of the parts can identify differences in architectural approach between the parts and the new
application. Prototyping affords an excellent opportunity for parts evaluation, but is often not an option for
designers. In an ideal world, parts could be used in prototypes to determine exactly how they work before they
need to be used in an actual application. Code analyzers and standards checkers can be used to check confor-
mance or compatibility of candidate components to project design standards.

During this analysis process, the perceived cost (vs. the real cost) of reuse plays an important role. Although
the true cost of modifying the reusable component may not be any higher and may, in fact, be lower than
developing code from scratch, it is difficult to quantify the costs precisely. Developers generally under-estimate
the cost of custom development, and over-estimate the cost of modifying reusable components.

There has been research into the development of techniques for automating the evaluation process and assist-
ing in costing the use of a given part (see References [10]} and [35]). Factors such as closeness of project and
parts’ requirements, and amount of modification needed to get the part to fit, play a role in the cost estimate.
This was discussed briefly in Chapter 11. When more fully developed, these types of techniques should prove
valuable during parts analysis.

12.1.2 Design Differences

As candidate parts are identified for use in an application, it is necessary to check for compatability between the
parts and the new design, and between parts from different parts sets. The impact of design differences
between reusable components and the new application is dependent upon both the type of application and
where within the application the components are to be used. If parts from various parts set do not need to
interface with each other, or if the reusable parts are generally isolated from the custom portions, design dif-
ferences may have little impact. If there is a need for close interaction among software components from these
various sources and there are significant design differences, interfacing may be problematic. It is possible that,
although parts from more than one parts set will be used, they may not need to interface with each other and,
thus, integration of parts from these various sets become~ a non-issue. For example, if only parts from Parts
Set A will be used in Subsystem X, and parts from Parts Set B will be used in Subsystem Y, there may be no
need for concern about design differences between Parts Sets A and B. On the other hand, if parts from both A
and B will be used in the same subsystem, it may be necessary to determine how well these parts will interface.

Differences in parts that may need to be considered include the following:

e Some parts (or custom code) may be designed with data types defined throughout the code,
whereas others (such as the CAMP parts) may have the types defined in "data type" packages that
are then with’d into other packages as needed.

o If an abstract data type approach has been taken in the parts development, and the application
requires direct access to the data structures, some restructuring of the parts may be necessary.

e Strength of data typing between the new application and the parts may need to be resolved.
Basically, strongly typed parts can be used with minimal effort by either weakly or strongly typed
applications; more effort is required if the application is more strongly typed than the parts. See
Paragraphs 5.6 and 5.7.2 for more details on resolving component-application data type dif-
ferences.

135

APPLICATION of REUSABLE SOFTWARE
PRELIMINARY DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

12.1.3 Test Support

Availability of test procedures, code, and data is an important consideration when selecting parts. It has a
direct bearing on the cost of reuse and the confidence that the user may have in the parts. Test procedures and
code should always be provided along with the source code for reusable parts. This will allow the parts user to
rerun the tests in his own environment. Undoubtedly, software parts used in mission critical applications will
require retesting of some type. Anticipated test results should also be provided with reusable components.
Accompanying documentation should indicate any areas that may be particularly problematic and require spe-
cial testing attention if modifications are performed on the reusable component.

12.1.4 Development Standards

Software parts can be viewed as falling into two categories: parts that meet project standards (i.e., software
that was developed using the same or similar standards that are applicable to the new development effort) and
parts that don't (i.e., software whose development standards differ significantly). Differences in development
standards may be less problematic if the components are fully and well-documented.

In the former case, no changes are required to code headers or documentation for the reused software; the
design documents for the current application can reference the existing design documents for the parts. In the
latter case, the differences may first become apparent in documentation — documentation may be either non-
existent or inadequate. If this is the case, project standard headers should be added to the component, and it
should be fully documented along with the current development effort.

It may be cost prohibitive to enforce coding standards on reusable parts unless the parts were developed in-
house. Additionally, changes to the components to bring them into conformance with project coding standards
can be dangerous! Once the components are modified (whether for substantive changes or merely to add
headers or enforce standards conformance), they are no longer the same as when they were received and may
no longer qualify for support (if there was any). Enforcement of coding standards could result in dramatic
changes being made to the code. Depending on the customer for the final product, the developer may be able
to compromise on development/coding standards given the benefits of reuse.

Quality standards should not be compromised. This is not to imply that all reusable components must be
exactly as if they had been custom developed in-house. It does mean that certain standards should be set and
maintained in order to preserve overall project quality. The gains from using components of questionable
quality will be marginal at best.

12.2 Impact on Design

There are several items to be considered during design of reuse-based applications:

¢ Reusable components can exist at different levels of abstraction. If the reusable components are
generally isolated from other portions of the application, design differences may have little im-
pact, whereas if reusable components are interspersed with custom code, the differences may, in
some cases, be problematic.

o Differences in approaches to data typing can cause incompatibilities between components and
custom code

¢ Project-specific commonality may benefit from the development of reusable components.
Each »f these items is discussed in subsequent paragraphs.

136

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PRELIMINARY DESIGN

12.2.1 Levels of Abstraction

Software reuse can impact the design process in several ways. Reusable parts occur at many different levels
{e.g., unit, subsystem, system), thus parts can be incorporated into top-level design, as well as detailed design
and code; Figure 12-1 illustrates this. The occurrence of multiple levels of reusable components is one of the
factors that makes early investigation into available components necessary. The parts identification that was
begun during requirements analysis should continue during preliminary design; the parts-requirements correla-
tion table should also be maintained. The top-level design will probably undergo several iterations, with each
iteration raising the possibility of greater levels of reuse.

CSCl-1
csc cse e - cse cSC
Custom-1 Custom-2 : Housablod ; Custom-3 Custom-4
[]]
Custom-1 Rausabla-2 Reusabqus

Figure 12-1: Use of Parts at Architectural Design Time

As an example, consider the CAMP Kalman filter parts which are comprised of components at different levels
of abstraction. Figure 12-2 illustrates the hierarchical structure of this set of parts. The component at the
highest level might first become a candidate for reuse during requirements analysis when the developer first
identifies a need for a Kalman filter. Components at lower levels may then be identified as candidates during
preliminary and detailed design.

12.2.2 Data Typing

One of the key features of Ada that prevent misuse of software is strong data typing. The issues that arise from
the reuse of components that incorporate various degrees of data typing were discussed in detail in Chapter 5.
Conversion of data types and development of interface packages between reusable code and new application
code can become quite costly, thus, these matters are best given careful consideration during initial design.

12.2.3 Project-Specific Reuse

During the design of the new application, developers should identify portions of their system that lend them-
selves to development as reusable components. One clue is if they find themselves repeating design infor-
mation. [f the system is very large, this may not be readily apparent. This identification can be facilitated by
cross-group reviews, i.e., software designers from different potions of the system should attend reviews in order
to help identify commonality within the application. Once the commonality is identified, development should
follow the guidelines in Chapter 5, Architectural Design of Software Parts.

137

APPLICATION of REUSABLE SOFTWARE

PRELIMINARY DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS
| KALMAN FILTER I
PROPAGATE PHI and Q KALMAN UPDATE
|
SEGUENTIALLY UPDATE
P and X
1 1 1
UPDATE STATE
PROPAGATE PHI B rrerivgic UPDATE P VECTOR (X) PROPAQATE P

Figure 12-2: Software Parts Use in Missile Software Systems

12.3 Reviews

Architectural designs may undergo several reviews (both internal and external) depending on the size of the
project. These may include project walkthroughs of the design of various portions of the application, as well as
more formal reviews of the entire architectural design. Design reviews for applications incorporating reusable
software need to cover both the reusable software and the custom software. The reviews of the designs for the
reusable portions need to concentrate on different issues than those for custom software. Some of the key
questions to be considered during reviews are enumerated in Table 12-1. As an example of the difference in
emphasis, consider coding standards: reviewers would want to check custom code for conformance, but a
decision may have been made that reusable code will be exempt from those standards because of the danger of
modifying code and the additional cost it imposes.

During design walkthroughs, reviewers should verify that the design element will indeed satisfy the
requirement(s) to which it is correlated. If the parts have previously undergone testing and use, the
walkthroughs should be straightforward. Any deviations from project standards should be noted and, if neces-
sary, corrected. During design walkthroughs of reusable software, generally only the portions that will actually
be used need to be walked through. Application developers may want to "comment out” portions of the Ada
specifications of the parts that will not be used. This will facilitate review, and will eliminate concerns about
compilers not optimizing out unused code. On the other hand, the code which is commented out may be
needed at a later date, thus requiring additional modification to the reusable components.

The reviewers should pay particular attention to whether reuse is being maximized, and should query the desig-
ners about the extent of reuse. This requires some familiarity on the part of the reviewers with available
reusable parts sets. If reuse support personnel are available, they should be part of the review team because
they, presumably, will be familiar with available parts and should be able to determine if parts are being used to
the maximum extent possible. Project personnel are still needed to verify that the project’s requirements are
being met. If there are customer reviews of the top-level design, developers should be prepared to discuss reuse
and defend their parts usage decisions. Care needs to be exercised when reviewing a design that incorporates

138

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PRELIMINARY DESIGN

reusable software because there may be a tendency to make assumptions about the correctness and ap-
propriateness of reusable software that would not be made about custom software.

Table 12-1: Software Design Review Questions

o Does the expected functionality of the code meet the requirements?
o Will it work correctly?

o Does it conform to project coding standards?

¢ Is it documented adequately?

o Is it documented according to project standards?

» Does it meet project quality standards?

¢ Does the algorithm satisfy the requirements?

12.4 Summary

Figure 12-3 illustrates a typical scenario for preliminary design activities and shows the additional activities
when a reuse-based approach is taken. Although the documents identified in the figure are DOD-STD-2167A
documents, the impact of software reuse on the preliminary design activity is basically the same regardless of
the development standard used. During preliminary design, the developer will map requirements to actual
software entities. Additional tasks that result from a reuse-based approach to software development are
enumerated below.
¢ In-depth analysis of available parts
- Coding, documentation, quality standards

- Availability of test procedures, code, data

- Reputation of part developers

- Previous users’ experience with the parts

- Architecture of the parts

- Closeness of fit between the parts and new application
¢ Benchmark the parts
¢ Integrate top-level reusable components into the design

o Identify top-level portions of the new application that can be built as reusable software com-
ponents

139

APPLICATION of REUSABLE SOFTWARE
PRELIMINARY DESIGN DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Prelim.

INTERFACE
DESIGN

DOCUMENT

@ Parts Catalog
Part_Queries - Parts
Source
’_\ Code PARTS o SOFTWARE
Part Attributes - BENCHMARKS . ' DEVELOPMENT
S [NOTEBOOK

Figure 12-3: Reuse and Preliminary Design

140

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING

CHAPTER 13
DETAILED DESIGN and CODING of REUSE-BASED APPLICATIONS

During detailed design and coding, the detailed design for each top-level software component (or CSC, in
DOD-STD-2167A terms) will be completed. The software design should be documented in some type of
software design document. Under DOD-STD-2167A, the external interfaces are documented in an Interface
Design Document; this should also be completed at this time. Test cases, test schedules, and test procedures
for the CSC integration and testing should be identified and documented in the software development file or
notebook for that CSC. Test requirements, cases, schedules, and procedures for testing lower level software
components (or Computer Software Units (CSU), in DOD-STD-2167A terms) should also be identified and
documented in the software development file for the appropriate CSU. The test cases for formal qualification
testing (FQT) should also be identified and described. Under DOD-STD-2167A, this would be documented in
the Software Test Description (STD) for the CSCI. The actual source code is also produced to satisfy any
requirements or design constraints that cannot be met with parts and to interface reusable components with
custom software.

Ada lends itself well to the development of smaller modules, thus, it is often possible to combine detailed design
and coding. [f a module is sufficiently complex, then the detailed design and coding activities should be
separated. If they are separated, the detailed design should be at a higher level of abstraction than the code.
The detailed design/coding activities are a continuation of the preliminary or top-level design process. When
detailed design and coding are combined into one activity, the result is the production of the Ada bodies of the
previously specified packages.

13.1 Impact of Reuse

Reuse-based software projects may need to take a pragmatic approach and be willing to settle for an implemen-
tation that may not be exactly as their custom implementation would have been, as long as it meets all of the
functional and performance requirements, as well as the quality standards set by the project. No two people
will design a system in exactly the same way, thus, it is inevitable that the parts considered for reuse will not be
exactly as a project would develop from scratch. It is easy for the designer's first reaction to be, "This won't
work.” It is necessary for the him to get past this and on to the task of determining if the parts are suitable for
his application. He can then address the issues previously discussed (i.e., Does it work as is? Does it come
close enough so that the required modifications are cost effective? Does it need to be reworked? Does it need a
complete overhaul? Does an interface to it need to be built? Does it need to be completely scrapped?). Even if
the code is accepted "as is,” documentation may still be need to be brought up to project standards.

When developing a parts-based application, it is important to realize that the reusable parts may contain some
code that is not used by the new application. An optimizing compiler shouid eliminate unused code and data,
but if it does not, the user should be aware that he may need to manually remove it in order to achieve the
efficiency requirements typical of RTE applications. Even if the unused code is eliminated by an optimizing
compiler, the application developer may still want to remove or comment it out to avoid confusion when
examining the code, and to eliminate the need to document and test it. It is sometimes helpful to develop a
special commenting convention for unused code, such as "-- NOT_USED" to begin each line of a code segment
that is unused. This is preferable to actual removal of the unused code because, as the design proceeds, some
previously unused code may be needed. It has the additional advantage that a pre-processor could be
developed to strip out that unused code. Marking unused code will facilitate review and maintenance because it

141

APPLICATION of REUSABLE SOFTWARE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

will be apparent which routines are being used from a package. There is always a danger in modifying code,
even if it is only to comment it out — comment markers could be added to the wrong lines, lirtes could acciden-
tally be deleted, etc. Even this type of modification can nullify maintenance agreements with parts suppliers.

13.2 Tracking Parts Use

Tracking of parts generally begins during requirements analysis with the development of some form of
requirements-parts correlation table. This identifies potentially applicable software components. As application
development continues, additional data can be tracked. It may be useful to keep track of where parts are used
within an application, and what percentage of the new application is reused software as opposed to custom
code. Tracking where within an application parts can be/are used can serve to identify areas for future parts
development. Data on lines of code for both the reused code and custom code can provide an interesting
comparison with the parts data. It may also be useful to keep track of whether parts are used "as is" or if they
require modification. The reason for modification may be significant in later analysis, so this should be
recorded as well. Modification may be necessary if a part does not provide the exact implementation that is
needed either from a precision, efficiency, or functional point of view. Additionally, some parts may be "skele-
tal" rather than complete parts. Others may contain “excess” code. Ideally, much of this usage information can
be fed back to a software reuse group and can facilitate the analysis of the parts by both the parts support
personnel (if they exist) and future application developers.

As an example of tracking parts use on a new development effort, consider the CAMP 11th Missile develop-
ment effort. The developers kept track of the number of parts that were used (see Table 13-1), as well as where
and how many times each part was used (see Table 13-2). The usage status with respect to the 11th Missile
effort of each part within the CAMP parts set was also tracked. Each part was assigned one of five codes to
indicate its status in the 11th Missile Application. The codes used were follow:

o U (Used): The part was used without modification.

e M (Modified): The part was used with modification.

¢ DF (Duplicate Function): The part implements the same function as a part that was used by the
11th Missile.

* NA (Not Applicable): The part implements a function not required by the 11th Missile.
* NC (Not Compatible): The part performs a function required by the 11th Missile, but was not
used.

This showed very clearly which parts were used and if they were used "as is" or with modification. It also
provided information on why parts were not used. Of the 454 CAMP parts that were available at the time,
112 of the parts were used either "as is" or with modifications. The parts that were modified were changed
either because they were not intended for direct use "as is,” i.e., they were more like templates (e.g., the
Kalman filter data types package which contained more data types than an application was likely to need, and
data types of a more general nature than would probably be needed), or because they were almost, but not
quite, a fit.

By keeping track of parts use, developers are able to determine where in the new application parts usage is
concentrated. For example, the CAMP 11th Missile developers found parts usage concentrated in navigation,
guidance, and Kalman filter operations. Tracking parts use can facilitate an analysis of why available parts are
not used. Again, on the 11th Missile Application, developers found that of the 342 CAMP parts that were not
used, 142 were not applicable, i.e., they implemented a function that was not needed by the 11th Missile; 179
parts duplicated the functionality of CAMP parts that were used, e.g., there were two different navigation

142

APPLICATION of REUSABLE SOFTWARE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING

Table 13-1: Summary of CAMP Parts Usage in the 11th Missile Application

Parts Used 96
Parts Used with Modification 16
Parts Not used 341

454

Used 24.7% of Parts
Used 23.1% of Parts Lines-of-Code

Table 13-2: Summary of CAMP Parts Used in the 11th Missile Application

Number
Part Used by LLCSC Used
Basic Data Types Navigation_Operations 1
Guidance_ Operations
Abstract Processes All tasks 1
Standard Trig and Polynomials Navigation_Operations 22
Guidance Operations
Coordinate Vector Matrix Algebra Navigation_Operations 11
and General Purpose Math Guidance Operations
WGS72 Ellipsoid Navigation Operations 3
Guidance Operations
Common & Wander-Azimuth Navigation Navigation_Operations 14
Direction Cosine Matrix Operations Navigation Operations 14
General Vector-Matrix Algebra Kalman Filter 11
Navigation Operations
Kalman Filter Kalman Filter 8
Abstract Data Structures Memory Manager (N&G) 3
Kalman Filter
Quaternion_Operations Quaternions 2
Waypoint Steering Guidance Operations 8
and Geometric Operations
Signal Processing Guidance_Operations 5
Clock Handler System Time (N&G) 1
Local_Time
"niversal Constants Navigation_Operations 1
Guidance_Operations
Message Manager (N&G)
Conversion Factors Message Manager (N&G) 5
and Unit Converasicns
Bus Interface BIM Interface (N&G) 1
External Form Conversion Barometric Altimeter _1
112
"Used By" is the LLCSC which instantiates or imports the part.

bundles, but only one was needed in the 11th Missile; and 20 of the parts were incompatible with the 11th
Missile Application, i.e., they provided a function that was required by the 11th Missile, but they provided it in a
way that was not appropriate to the 11th Missile implementation. Some of the parts were not used because of
efficiency concerns about invoking a subroutine.

Data on lines of code for new and reused software should also be tracked. On the CAMP 11th Missile develop-
ment effort this information was tracked for each of the major subsystems within the application; a sample of
this data is shown in Table 13-3.

143

APPLICATION of REUSABLE SOFTWARE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Table 13-3;: CAMP 11th Missile Parts Usage

LOC LoC

LLCSC PACKAGE PARTS NEW | % PARTS
Environment 1LCSC | Baro_Altimeter 10 52 16%
ocu 0 133 0%

M 128 409 24%

ISA 0 254 0%

SCP 0 42 0%

[BB 0 79 0%

Measurements 0 119 0%

Internal_Bus 0 761 0%

System_Clock 56 0 100%

Local_Clock 56 0 100%

CPU 0 38 0%

Message_Proc 136 4053 3%

Mem_Manager 124 52 70%

Navigation LLCSC Nav_System 0 503 0%
Quatemions 50 191 21%

Nav_Ops 1727 2500 41%

Align_Meas 0 213 0%

Kalman Filter 1522 4714 28%

Guidance LLCSC Internal Bus 0 740 0%
Message Proc 141 975 13%

Master_Time 56 0 100%

CPU o 38 0%

Guid_Ops 1298 1739 43%

System Op Data 0 34 0%

Guid_Computer 0 49 0%

Mem_Manager 52 124 30%

13.3 Parts Modification

A project may need to modify a reusable component for reasons other than errors, e.g., a reusable component
may not quite meet the project’s requirements. If the parts are supported, the decision to modify a part should
generally be made in consultation with the support group so that it can be determined who will be responsible
for the modification and future maintenance. If changes are specific to the application, the application group
should make the change. This do¢ not necessarily negate the benefits of reuse because the existing part can
be used as a guide to developing the modified version. Additionally, much of the test procedure, code, etc., will
probably already exist and just need to be modified. Reuse is not all or nothing. In fact, the modifications may
be minor changes to enhance performance or functionality and, thus, will k2 significantly easier than starting
from scratch. There are significant benefits to be realized even when parts .. not used "as is.” If the modifica-
tion will have broad applicability, the support group should make the modification, and re-release the part.

144

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING

13.4 Reviews

Although in an ideal situation, it would be possible to treat reusable parts as "black boxes," in reality, particularly
with real-time embedded mission critical applications, it may well be necessary to walkthrough all design/code,
regardless of whether it is new or reused. Generally, there should be at least one walkthrough for each Ada
package; larger packages may be broken down and undergo several walkthroughs. As with walkthroughs of
new code, these walkthroughs seek to ensure that the code meets the requirements, interfaces properly with
other code, and conforms to project standards. Enforcement of project coding standards on the reused parts is
generally not feasible, although the lack of, or inadequate, documentation should be remedied.

13.5 Case Study: Incorporating a Reusable Kalman Filter

This case study builds on the one presented in Chapter 3. Where that one began with domain analysis and
went on to discuss some of the problems encountered in parts specification and design, this one discusses the
incorporation of the reusable CAMP Kalman filter components in an application.

As previously discussed, Kalman filters play a significant role in missile operational flight software. Basically, a
Kalman filter for missile flight operations combines external position or velocity measurements with internal
position or velocity measurements, taking into consideration the uncertainty of the measurements when cal-
culating an optimal estimate of missile position and velocity. The Kalman filter also produces an optimal
estimate of inertial sensor errors. This is illustrated in Figure 3-9.

The CAMP domain analysis identified two forms of the measurement sensitivity matrix, "H": "Compact_H" and
"Complicated_H". The Complicated_H parts assume that the measurement sensitivity matrix is sparse, which
allows for a more complex relationship between a measurement component and the components of the state
vector. In the so-called Compact_H parts, it is assumed that in any given row of the measurement sensitivity
matrix there is only a single "1", with the other elements being zero (this implies that any measurement com-
ponent is a direct measurement of a single component of the state vector). Five of the Kalman filter parts
provide an alternative representation for the measurement sensitivity matrix. (Note: The measurement sen-
sitivity matrix (H) relates the external measurement vector (Z) to the state vector (X) as follows: Z=H*'X. Exter-
nal measurements can be obtained from radar or barometric altimeters, TERCOM, DSMAC, GPS, or some
other external system. The state vector contains estimates of errors in navigation parameters and in inertial
sensor data.)

Figure 13-1 contains a portion of the CAMP parts used in performing Kalman filter Complicated_H operations.
This collection of components is referred to as a bundle for the Kalman filter operations. It includes the
Kalman filter parts, as well as the other parts that are needed to support Kalman filter operations, i.e., the
"environment". The bundle includes the following generic packages:
¢ The Kalman_Filter_Complicated_H (KFComplicated) package which exports operations specific
to a Kalman filter using a complicated H matrix

¢ The Kalman_Filter_Common (KFCommon) package which exports required operations common
to Kalman filters using either a complicated or compact H matrix

¢ The General_Vector_Matrix_Algebra (GVMA) package which contains generic packages and sub-
routines which export the matrix and vector data types and operations required to implement a
Kalman filter

¢ The Polynomials package which provides various solutions to transcendental functions

145

APPLICATION of REUSABLE SOFTWARE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

¢ The General_Purpose_Math (GPMath) package which exports the square root operator required
to instantiate the vector operations packages contained in the General_Vector_Matrix_Algebra
package: It obtains this square root operation by instantiating one of the square root operations
exported by the Polynomials package.

¢ The Kalman_Filter_Data_Types (KFDT) package which provides all the data type definitions and
subroutines required to instantiate the generic Kalman filter routines: Most of these data type
definitions and subroutines are obtained by instantiating packages and subroutines contained in
the General_Vector_Matrix_Algebra package.

The user implementing a Complicated H Kalman filter from the CAMP parts has several options:

e Use the Kalman filter parts bundle “as is." This would involve with’ing the Kalman_Filter_Data_
Types package into his application and using the data types and operations exported by it to
instantiate the routines he requires in the Kalman_Filter_Complicated_H package.

e Plug in some of his own code for one or more of the routines contained in the Kalman filter
collection. This could be done if the existing subroutines did not meet the user’s functional or
performance requirements.

¢ Modify the Kalman_Filter_Data_Types package to instantiate different packages and subroutines
in the General_Vector_Matrix_Algebra package.
Each of these alternative is discussed in the following paragraphs.

13.5.1 Using the Kalman Filter Parts "As Is"

"As is" use of the Kalman filter bundle is illustrated in Figure 13-1. This approach can be taken when the user
is satisfied with the data types and operations which are supplied by the Kalman_Filter_Data_Types (KFDT)
package. It allows the user to get a Kalman filter up and running quickly (e.g., in order to test alternative design
decisions, such as the number of states), even if the resulting filter does meet all of the the efficiency require-
ments of the final application. Use of this approach does not preclude the user from revisiting the code at a
later time to increase its space and/or time efficiency.

When constructing a Kalman filter in this manner, the user creates his own Kalman filter implementation pack-
age (Kalman_Filter_Application) which does the following:
e With’s the Kalman_Filter_Data_Types (KFDT) and Kalman_Filter_ Complicated H (KFCompli-
cated) packages

e Uses the data types and operations exported by the KFDT package to instantiate the routines
required in the KFComplicated package.

The remainder of the application code can obtain access to the Kalman filter data types and operations by
with’ing in the KFDT and Kalman_Filter_Application packages. This approach is illustrated in Figure 13-2.

13.5.2 Using Custom Code with the Kalman Filter Parts

If the user initially implements his Kalman filter using the "as is" approach described in Paragraph 13.5.1, he
may, at a later time, decide to replace some of this code with his own. This may be required to increase
efficiency of his application or because the parts do not fully satisfy his requirements. If the modifications do
not require altering the interfaces, the part code can be replaced with custom code simply by modifying the
subroutine bodies.

When customizing the Kalman filter environment, the user may choose to modify some of the low-level utilities,
modify the bodies of some of the Kalman filter routines, or choose to not use one or more of the Kalman filter

146

DETAILED DESIGN and CODING

APPLICATION o REUSABLE SOFTWARE

ajpung sued Jayi] uewey] :[-g 2anBig

-+ -
Linwepy” wosysungeg
TN 0Nz 0 eg

‘woyonddy 1o wemey pus

uren semiey andwoy pareddwo)) mau 51 OO UsmEY vondumg

Hparendmo) sy uemey mou st parestidwodyy 28eyed

1Ml ofeyond

m = oyepdpToemey paesydmodgy mou st aepdn.gy %eyed
B

8

m 'sadkj "eieq 191 UrwEY M8

-

SALVIVQ MAL TS NYHIYY

R S SO N S SRS B s]

,/.ll..,l[, e s
U W QILYOIANOD WALTI NYRTVX

adedoy

. smp mag aepdn

e

(=)

mouwey 4 vo.ﬁ.l:.h“.wo) ~ x.o->|ul8n|vua1-.5¢!
P ...wh_:!.z.i.-v_.:.._!v.ls» wweeso) sepdy) "Ipeavenbeg
l.qudt.-illsunj T T

................................

d

Sefvwryy AV sowmmac) s0ar)

NOMMOD LTI NYNTVY

147

: x
: oaporfTIog

i peerenseo) ssonmsdo xudep

100y "ssenbg
VATIOTY XIMLYN ¥OLIIA TV IINTD

RLYW™3S048nd TV EINID

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

APPLICATION of REUSABLE SOFTWARE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

package Kalman_Filter_Application is
KALMAN_FILTER_DATA _TYPES :
—> package KDT isnew Kalman_Filter_Data_Types;
package KFComplicated is new Kalman_Filter_Complicated_H;
<operations> I

function Kalman_Gain is new KFComplicated.Compute_Kalman_Gain

\ . end Kalman_Filter_Application;

with'd by

with'd by

Figure 13-2: Using the Kalman Filter Parts "As [Is"

routines and place the custom code in his own Kalman_Filter_Application package. These options are dis-
cussed in the following paragraphs.

One of the utilities in the Kalman filter environment is the square root function which is exported by the
General_Purpose_Math (GPMath) package. If this square root function is not appropriate for the user's Kalman
filter application he has two choices. If it was inappropriate for his entire application, he could modify the
square root function in Polynomials which is instantiated by GPMath, he could modify GPMath to instantiate a
different square root function in the Polynomials package, or he could add a new square root function directly
to the GPMath package. If the square root function was appropriate for portions of his application, but not for
his Kalman filter, he could modify the Kalman_Filter_Data_Types package to use a different square root func-
tion when instantiating the vector operations package in GVUMA,

The user also has the option of modifying how his Kalman filter is built. As can be seen from Figure 13-3,
some of the Kalman filter parts instantiate other Kalman filter parts. For example, the KFComplicated.
Kalman_Update package instantiates the KFCommon.Error_Covariance_Matrix_Manager and KFComplicated.
Sequentially_Update_Covariance_Matrix_and_State_Vector packages. The KFComplicated.Sequentially_
Update_Covariance_Matrix_and_State_Vector, in turn, instantiates the Compute_Kalman_Gain, Update_Error_
Covariance_Matrix, and Update_State_Vector subroutines also contained in the KFComplicated package. Be-
cause of this, the user can customize his Kalman update operation by modifying any of the parts being instan-
tiated. Alternatively, rather than instantiating the Kalman_Update package, he can implement an update
directly in his Kaiman_Filter_Application package by instantiating alternative Kalman filter parts and, optionally,
perform some of the operations with custom code.

148

APPLICATION of REUSABLE SOFTWARE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS DETAILED DESIGN and CODING
/ . \
KALMAN_FILTER_COMMON KALMAN_FILTER_COMPLICATED_H
»
Brror_Covariance_Matrix_Mansger Compute_
Kalman_Gain

Initiat imam'a\td
: Sequentially_Updae, Covariance_

Mnix_nd_-Sn,_Vm

instantisted

instantiqted

Updaee_Brror_

Covariance_Matrix

Update_State_Vector

Figure 13-3: Kalman Filter Parts Instantiate Other Parts

Figure 13-4 represents the Kalman filter bundle after the user has modified the bodies for the Polynomials.
Square_Root package, KFCommon.Error_Covariance_Matrix_Manager package, and KFComplicated.Update_
State_Vector subroutine, and modified his Kalman_Filter_Application to do its own Kalman filter update opera-
tion rather than instantiating the update package in the KFComplicated package.

As long as the interfaces are not changed when the custom code is introduced, these modifications wili not
affect the rest of the user’s application. Consequently, the user could start development of his application using
the parts "as is” in order to get a Kalman filter up and running, and then go back and fine-tune the Kalman filter
without affecting the code for the rest of his system.

13.5.3 Modifying the Data Types Package

In addition to modifying subroutine bodies, the user can also modify the Kalman_Filter_Data_Types package.
This is particularly useful when greater efficiency is needed than is afforded through the standard CAMP Kal-
man filter data types package. The CAMP KFDT package was developed to facilitate testing ¢ the other
Kalman filter parts and to provide users with a set of data types and operations that would allow a quick
implementation of a Kalman filter; it also provides the user with a template data types package that can be
modified as needed. It was not developed with efficiency as the primary objective.

Modifications can range from simply instantiating different parts from the GUMA package, to replacing some of
the instantiations with custom code. Some of the more likely changes to the KFDT package are identified
below.

149

' GENERAL_VECTOR_MATRIX. ALGEBRA
i
W Vecsor_Operations_Coustrained

KALMAN FILTER COMMON | |] e -
Ervor_Covariance_Matris_Manager i e e e .
| | I Vector_Sealar_Operations_Constrained
@ m ,, “O-
> ! [
B TR PP TSP T PRI PN PO KALMANFILTER DATA TYPES r

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

e U | Dymasically Spare_Matrix_OpecatioasC.

—

i Set_to_ldeatity Matrit
| Set_to_Zero_Mawis

KALMAN_FILTER_COMPLICATED
(455

Sequostally_ Updaie_Covariasce_
Matris_and_Stake_Vector

...............................

packsge KDT is ew Kalman_Filter_Data_Types;

150

pxckage KFComplicated is new Kalman_Filter_Complicated_H:

function Kalman Gain is mew KFComplicated.Compute_Kalman_Gain

procedure Kalman_Filter_Update

end Kalman_Filter_Application;

L e T T S e DL VI VYAV U VVVEOY

APPLICATION of REUSABLE SOFTWARE

DETAILED DESIGN and CODING

Figure 13-4: Replacing Parts with Custom Code

T —]

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICA{IONS DETAILED DESIGN and CODING

¢ Use of the GVMA .Symmetric_Full_Storage_Matrix_Operations_Constrained package. This pack-
age implements a symmetric matrix by storing all of the elements, but performing operations only
on one of the symmetric elements and then assigning this value to both symmetric elements.
This approach saves execution time over a full-storage full-operation matrix, but does not save
storage space. In order to also save storage space, the user could change the KFDT package to
instantiate the GVMA .Symmetric_Half_Storage_Matrix_Operations_Constrained package.

Use of the GVMA.Dynamically_Sparse_Matrix_Operations package. This package exports a
two-dimensiunal matrix whose elements are sometimes equal to 0. In order to save computation
time, a zero-test is performed before each element operation; this saves the overhead of operat-
ing with zero-elements. This package provides an appropriate implementation for the Kalman
filter matrices which require all the elements to be stored, but which may have a significant num-
ber of zero-elements.

Use of a custom-built static sparse matrix. This type of matrix stores only the non-zero elements
and thus, performs operations only on these non-zero elements. This improves on the execution
time of the GVMA .Dynamically_Sparse_Matrix_Operations by eliminating the need to perform
zero-testing. Because all of the operations are unfolded fi.e., the loops are removed) this type of
operation may require more memory than one that contains loops. This is the trade-off between
memory and execution speed.

Use of operations on mixed data types — multiplying symimetric matrices and vectors, multiplying
a sparse matrix by the transpose of another sparse matrix in order to obtain a symmetric matrix,
multiplying a sparse matrix by a symmetric matrix to obtain a sparse matrix, multiplying two
sparse matrices to obtain a symmetric matrix, multiplying sparse matrices, etc. The CAMP KFDT
package obtains these operations by instantiating the appropriate generic subroutine in the
GVMA package. If the user modifies the data types of one or more of the matrices involved in
these operations, he also needs to modify KFDT so that its exported operators operate on the
correct matrix types; this may involve writing his own operations. For example, if KFDT is
moditied so that some of the sparse matrices were represented as records containing only the
non-ero elements, any operations on this new data type would need to be custom-developed
since GVMA does not support operations on sparse matrices represented in this manner.

13.6 Summary

Two types of tools that can be particularly useful during detailed design and coding are a catalog of reusable
components and component constructors. A catalog should provide information on functionality and perfor-
mance of the reusable components, as well as information on usage, restrictions, etc. Software construction
tools can provide a (semi-Jautomated means of composing new software systems from reusable components
and custom software. Both of these types of tools are discussed in Chapters 17 and 19.

Figure 13-5 illustrates a typical scenario for detailed design and coding activities, and shows the additional
activities when a parts-based approach is taken. Although the documents identified in the figure are DOD-
STD-2167A documents, the impact of software reuse on this activity is basically the tame when other stan-
dards are used. During detailed design and coding, the developer will complete the preliminary design, as well
as the lower level design. Additional tasks that result from a reuse-based approach to software development are
enumerated below.

¢ Check for compatability of parts with custom application code

e Check for compatability of parts from different parts sets
¢ Integrate lower level parts into the design and implementation

¢ Design and implement portions of the new application for reusability

151

APPLICATION of REUSABLE SOFTWARE
DETAILED DESIGN and CODING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Figure 13-5: Reuse and Detailed Design/Coding

152

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS TESTING

CHAPTER 14
TESTING of REUSE-BASED APPLICATIONS

One of the key issues in software reuse is confidence in the correctness of the reusable components. Because a
developer of a new application is ultimately responsible for its correctness, regardless of the source of the
software, he must somehow assure himself, as well as his management and customer, that the reused parts are
indeed correct. Even if the parts have been thoroughly tested by the parts developer, the application developer
must determine the level of testing he will perform on them. It is generally advisable to conduct some level of
testing on the reused software, although it may not be necessary to subject it to unit testing.

The level of testing performed on reusable parts is dependent on the confidence that the developer has in the
parts and the critical nature of the application. The developer may, in some cases, want to unit test all of the
parts that will be incorporated into the new application. This may be true if the application is particularly
critical or if modifications have been made to the reusable component. In some cases, unit testing may be
by-passed in favor of integration testing. Bundling the test plan/procedure, test code, and expected results with
a software part can provide the developer with an extra level of confidence in the parts — he can reperform the
tests himself to verify that the parts work as advertised.

One approach to testing software that includes reusable components provides a three-tiered testing scheme. In
this approach, no unit testing is done on any reusable software part developed by the same project team
developing the new application since it will have already passed testing by that group. Other reusable software
parts that are accessed directly by the new application undergo unit and integration testing. To minimize this
effort, subroutines that are not used can be commented out. Some of the reused software parts will only be
accessed through interface packages that are built on top of them. For example, a linked list package may only
be accessed via an ordered list operations package. Packages falling into this category do not need to be unit
tested, but they will undergo integration testing when the interface package is unit tested. If the reusable
components come from a source other than the current project, it may be necessary to unit test them, par-
ticularly at the boundary conditions. This approach was taken on CAMP Parts Engineering System catalog
system which incorporated reusable software from more than one parts set. A similar approach was taken on
the CAMP 11th Missile Application: the CAMP parts were assumed to be correct and were not tested
separately by the 11th Missile development team; they were tested indirectly as part of the units that invoked
them.

A parts usage history can provide valuable information to a potential reuser when trying to determine how to
handle testing of software that incorporates those parts. This information, which can be captured in a catalog
or library, should indicate the experience that others have had in using the parts, and indicate the level and
quality of testing they have undergone.

If the application is targeted at other than the development machine (as will generally be the case with RTE
applications), it is often useful to first compile and perform unit testing on the development machine because
the development machine will most likely have better debugging and code management tools than the compiler
for an embedded computer. Once the units are debugged on the development machine, they can be tested
with the cross-compiler’s tools and then, if possible, with a simulator. In some cases, it may not be possible to
meaningfully perform unit tests unless they were compiled on the target machine. During CAMP 11th Missile
development effort (which was targeting a MIL-STD-1750A processor), most unit and package tests were first

153

APPLICATION of REUSABLE SOFTWARE
TESTING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

executed in the development environment. Errors were found and corrected much faster in this environment
than with the cross-compiler’s tools. The units were then tested on a 1750A simulator or 1750A hardware.
Since the code and the test drivers had been checked out, these tests served primarily to debug the 1750A
cross-compiler, time the software, and check numerical accuracy. Figure 14-1 depicts this testing approach.

Development
Target

1750A
Simulator

1750A

Hardware

Closed-Loop

UNIT TESTS 3 INTEGRATION TESTS

Figure 14-1: Test Approach

A parts catalog or library can support the testing of parts by providing information on level of testng and test
results, and by including the test procedures, code, etc. The CAMP catalog contains pointers to test code for
the reusable code parts; other catalogs may contain the actual test code and documentation.

14.1 Test-Related Activities

DOD-STD-2167A calls for the development of a test plan for each CSCI. Generally, reusable code com-
ponents will not be at the CSCI level. They will be at the CSC or CSU level, thus, a project’s test plan may not
deal directly with reusable code components. The processing (i.e., evaluation, integration, testing, and
documentation) of reusable software should be addressed ir the software development plan that is developed
prior to software development.

During detailed design and coding, the test cases, schedules, and procedures for integration testing should be
identifica and documented in the appropriate software development file; and the test requirements, cases,
schedules, and procedures for CSU testing should be identified and documented in the SDF for the appropriate
CSU. Testing may result in revisions to design documents or code, and hence retesting of various portions and
levels of the application software. During testing, documentation and source code updates must be produced to
reflect any changes that result from this testing activity.

Reuse has little direct impact during testing except in the following areas:

e Testing may go more smoothly due to the incorporation of well-tested, highly robust software
parts.

o If any errors are identified during CSCI testing, it will have to be determined whether these errors
resulted from the new code, the custom code, or the interfaces between them. Errors in the
reusable code may be more difficult to locate. Remedies to errors in the parts are dependent
upon the support structure that is in place to service the parts and the application developers.

154

APPLICATION of REUSABLE SOFTWARE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS TESTING

14.2 Summary

Differences in testing applications comprised of all custom code versus those that incorporate reusable code
arise mainly if errors are detected. Then the developer needs to determine where the error occurred and, if it
occurred in a reusable component, he needs to know if the reusable software is supported and who is respon-
sible for maintenance. If the reusable components are maintained by an outside party, turn-around time for
error corrections is a critical factor. This type of information should be known long before the project actually
reaches testing.

Reusable code should come with test documentation and test code. This will facilitate reuse by increasing user
confidence and decreasing the cost to retest. Test products can be cataloged separately from the reusable code
or can be a type of attribute for the code entry. How this is handled is dependent upon the particular catalog
or library that is used.

155

APPLICATION of REUSABLE SOFTWARE
TESTING DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

156

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS MAXIMIZING SOFTWARE REUSE

SECTION Il
MAXIMIZING SOFTWARE REUSE

157

MAXIMIZING SOFTWARE REUSE

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

158

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OVERVIEW

CHAPTER 15
MAXIMIZING SOFTWARE REUSE OVERVIEW

Reuse frequently takes place on an ad hoc basis — programmers within the same group share code segments
and tools they have developed, and as they move from project to project, they take their accumulated
knowledge and software with them, reusing it on new projects. This type of reuse has been practiced for many
years, but has not been sufficient to ameliorate the growing software crisis.

Software reuse will be maximized by (1) management support, (2) cultural changes, and (3) mature
methodologies and tools. Management support is needed to obtain the additional resources required to in-
tegrate reuse into the software development process. Customer support and encouragement can have a sig-
nificant impact on management support (i.e., it is unlikely that most production projects will be able to obtain
the resources need to establish software reuse as a means of doing business if there is not customer support for
the concept). Although there are technical impediments to software reuse, many of the barriers are cultural.
For example, the "not invented here" syndrome plays a significant role in inhibiting software reuse. There are
also contractual issues that inhibit reuse. Finally, although it is possible to establish and practice software reuse
without the aid of sophisticated automated tools, reuse will be facilitated by software development environments
that have built-in support for reuse, and by methodologles that specifically address reuse during the various
software lifecycle activities. For example, a library system that supports code reuse and provides a mechanism
for assisting in the integration of that code in the new application is more likely to encourage reuse than one
that merely provides the location of the reusable code.

To be effective on a large scale, reuse needs to be broadly and systematically applied. Up-front planning for
both the development and use of software components is needed. We have previously explored some of the
costs associated with both development of reusable software components and a parts-based approach to
software development. The cost to develop reusable software is higher than the cost to develop custom
software due to special analysis design considerations for reusable components, additional documentation
needs, etc. Costs associated with a parts-based software development approach include locating, identifying,
evaluating, and incorporating available software. These are tasks which can be both time-consuming and,
occasionally, tedious, particularly as the number of parts sets from diverse developers increase.

The remainder of this chapter provides an overview of issues that affect levels of software reuse, including
language features, standardization, training, culture, reuse of higher levels of abstraction, and tools. The follow-
ing chapters then cxpand on these topics.

15.1 Language Features

Throughout this manual we have assumed that reuse is taking place primarily at the code level and that the
implementation language of the reusable components and applications is Ada. Reuse is not dependent upon a
specific language, but it can be facilitated by language features that promote development of clean interfaces,
information hiding, compile-time error checking (such as that available with strong data typing), and represen-
tation of user-defined entities (such as that available through user-defined data types). Use of a particular
language or language feature does not imply that the resulting code is reusable, i.e., not-every Ada generic unit
is truly "reusable”. Similarly, use of a particular language does not imply that the resulting software cannot be
reusable, e.g., reusable FORTRAN routines can be written.

159

MAXIMIZING SOFTWARE REUSE
OVERVIEW DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

15.2 Standardization

Language standardization and standardization on a particular language for classes of applications promote
software reuse. Lack of language standardization has been a hindrance to the development of widespread code
reuse — the large number of languages has resulted in a situation where it generally was not cost-effective to
develop a large parts set and supporting tools and environments for the range of languages that were being
used. For example, FORTRAN mathematical subroutine libraries have been successful, but widespread use of
higher level FORTRAN parts has not been achieved. This is, in part, due to the proliferation of FORTRAN
dialects which impedes reuse. Obviously, if all parts were developed using the minimal subset of FORTRAN,
this would not be a problem, but if the additional features that distinguish dialects were not in use, there would
be no need for these dialects.

The DoD has addressed the language standardization issue by developing the Ada language and requiring that
Ada compilers pass a series of tests for compliance with the language standard. This ensures that required
language features are present, and provides the user with some level of confidence in the operational correct-
ness of the compiler. Compiler validation does not imply that the compiler will correctly handle all valid Ada
constructs, as it is impossible to check for all combinations and complexities of language use.

Standardization on a particular language for a class of applications can also promote reuse. It is difficult to
reuse code components if one application is in Ada and another, similar application is in FORTRAN or
JOVIAL, or some other language. Not only are there language barriers, but there may be knowledge barriers
as well. For example, even if there is a way to interface the languages, the software engineer may not have
enough familiarity with the language to ascertain if a component should be reused. The DoD has attempted to
rectify this situation by mandating the use of Ada for mission-critical applications.

15.3 Training

Software engineers will require, and do not generally receive, training in order to successfully develop and use
reusable software. At some Japanese companies, programmers are given monthly exercises in software
development. The solutions are evaluated, in part, on how effectively reusable software is incorporated. Train-
ing in the identification of commonality within and across applications, and in the development of reusable
software is also required. Software managers will also require training in software reuse. They will need to
understand the special requirements of developing and using of of reusable components.

Training should be introduced in the software engineering curriculum, as well as in the workplace. Software
engineering students are generally not taught to reuse software; they are taught to develop applications from
scratch. In fact, they are encouraged to "reinvent the wheel” by prohibitions on collaborative work and rewards
for highly customized solutions. One-th-job training is needed for software engineers already in the workplace.

15.4 Attitude/Culture

Effective software reuse requires a change in culture or attitude. The "Not invented here" or "My way is better"
syndrome can be a powerful inhibitor to software reuse. A combination of training and management
incentives/mandates may be necessary to overcome this barrier. Once an organization begins to experience
success in software reuse, the success stories may be the best means of overcoming attitide problems.

Managers also have attitudinal barriers that must be overcome. Too often software is viewed as a short-term
asset; in order for reuse to succeed, software must be viewed as a capital investment. This is the difference
between profit maximization in the large vs. profit maximization in the small. In some cases, this view is the

160

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OVERVIEW

result of accounting practices (i.e., of how software can be handled on the balance sheet). This was also dis-
cussed in Chapter 10.

15.5 Reuse of Non-Code Software Entities

Virtually any software product can be reused, including requirements, design, code, documentation, test support
documents, etc. The major problem is one of representation and support. Reuse of higher level entities (i.e.,
of higher levels of abstraction, such as designs or requirements) has intuitive appeal — fewer implementation
dependencies would exist in the components, theoretically making them more reusable. The products of
domain analysis capture canonical requirements and designs that can be reused. The representation of these
and other entities continues to be a research issue, as does the mechanism for correlating related entities and
representations within a library.

15.6 Tools

Tools and environments play an important role in the engineering and application of reusable software com-
ponents. Although most of the tasks can be performed manually or with rudimentary tools, the tedium and
time required to do so often makes this impractical. Tools that operate efficiently and reliably can facilitate the
introduction and acceptance of software reuse techniques in the software development process, and provide
additional productivity gains.

By and large, the tools needed for development of reusable software are the same ones needed in the develop-
ment of custom software. The one major difference is in the area of tool support for domain analysis. Domain
analysis has not been a part of the traditional software development process, thus there is no standard set of
tools to support this activity. Some of the types of tools that may support domain analysis are identified below.
e System analysis tools to facilitate the analysis of existing applications in the domain
* Modeling tools for use in the development of a domain model. For example, entity-relationship-
attribute (ERA) modeling may be used to model the domain, thus tools that support ERA model
development can also support domain analysis.
¢ Knowledge engineering tools for use in acquiring and processing domain information
There is still considerable on-going research in the area of domain analysis, thus, the question of optimal tool
support is largely unresolved. This should not inhibit the initiation of domain analysis, as many of the tasks can
be performed with available tools.

Tool and environment support for reuse-based application development can ease the initial cost of reuse,
facilitating acceptance of software reuse as a viable approach to software development and providing additional
productivity gains. Figure 15-1 summarizes the types of tools that can be used for parts-based applications
development.

Some type of component catalog or library is essential to the success of any software reuse effort. Software
developers must have a means of identifying and locating potentially applicable parts. A catalog can range
anywhere from a paper version to a full-blown, cn-line library complete with distributed access and a high level
of user support. A catalog can provide information on sizing and timing, on usage restrictions. on the location
of documentation and source code, as well as test code and data, on how to use the pars, and on other user’s
experiences with the parts. Catalogs are discussed in more detail in Chapter 17.

Application-based search and retrieval facilities can be used early in the system/software development cycle to
obtain information about potentially applicable software components long before detailed information is known

161

MAXIMIZING SOFTWARE REUSE
OVERVIEW DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

e COMPONENT CATALOG

* APPLICATION-BASED SEARCH/RETRIEVAL TOOLS

¢ GENERATION/COMPOSITION/INTEGRATION TOOLS
* DOCUMENTATION TOOLS

¢ TEST TOOLS

¢ EVALUATION SUPPORT TOOLS

- BENCHMARKS FOR COMPILERS
- BENCHMARKS FOR PARTS
- ANALYSIS AIDS

¢ COMPILERS

Figure 15-1: Summary of Tools for Software Reuse

about the types of software components that might be needed. This type of facility can be used during
proposal preparation and during software requirements and design to provide early identification of candidate
reusable software components, allowing the user to obtain information about reusable components parts based
on information about the application domain and specific application. More detailed information about the
parts can then be obtained from a component catalog or library. Application-based search and retrieval
facilities are discussed in more detail in Chapter 18.

Software composition/generation/integration tools can be used during FSED development and for prototyping
during proposal preparation or during requirements development and verification. These types of tools can be
used to obtain lower level parts for incorporation in an application (e.g., data type definitions together with
their operators), as well as subsystem level parts for later integration. They can also facilitate the integration of
custom and reusable software. Software composition/generation/integration tools are discussed in more detail
in Chapter 19,

Benchmarks for both the parts and compilers are critical to the success of software reuse. Compilers need to
be benchmarked early in a project in order to verify that they can properly and adequately handle the language
features that are used in the parts. Parts need to be benchmarked to verify that they meet project functional
and performance requirements. Parts that do not initially meet project requirements should not be rejected
outright; slight modifications may make them acceptable, and the project can still benefit from the reuse.
Benchmarks for reusable parts and compilers have been identified as an area that needs additional work. Some
compiler benchmarks were developed during the CAMP program. These can be used to evaluate the correct-
ness and effectiveness of the compiler; they are discussed in more detail in Reference [12]. Projects need to
take responsibility for verifying the adequacy of their compilers, but compiler vendors need to provide compilers
that support and promote Ada reuse.

Tools that analyze complexity and verify compliance with project development standards can also be useful in
the evaluation of software components. Additionally, any support for estimating the closeness of fit between
requirements and available components will also facilitate reuse. Tools that assist in the adaptation of com-
ponents to new applications can also be useful for more complex components.

15.6.1 A Parts Engineering System for Reuse-Based Application Developmeﬁt

A parts engineering system should assist the user in a parts-based approach to software development. This can
simplify the software development task and reduce the cost of parts reuse. Such a system should contain
facilities to locate parts, assist the user in understanding and evaluating parts, and compose new software sys-

162

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OVERVIEW

tems from parts. Ideally, much of the system that related to reuse would be transparent to the user. Although
commercial tools are lacking in this area, a good deal of work is being performed.)

During the CAMP program, a set of prototype tools was developed and integrated into what was ieferred to as
a parts composition, or engineering, systera. Although many more features could be incorporated into such a
system, three major facilities were provided to support the user from pre-software development through coding
and testing. Figure 15-2 depicts a high-level view of the system. The catalog served as the cornerstone of the
system, providing detailed information about reusable resources. The Parts Exploration facility provided
application-based search facilities and was linked with the catalog so that candidate components could be ex-
amined and evaluated. The component constructors provided a means to both tailor complex reusable com-
ponents and generate portions of the application based on user requirements. A number of other facilities could
be added to the system. For example, configuration management could be tied in with the catalog; require-
ments and design tools could be integrated and could act as a source of information for catalog attribute values,
a central data dictionary could be integrated and used to generate documentation. The CAMP parts engineer-
ing system is used as an example throughout this section.

PARTS CMD COMPONENT CONSTRUCTION

Figure 15-2: The CAMP Parts Composition System

PARTS EXPLORATION

15.7 Reuse Support Group

Reuse support can range from someone performing librarian duties and verifying that project standards have
been met before a part is added to the catalog, to a significant staff that not only checks for compliance with
standards, but also performs independent testing, assesses the value of parts, assists users in software reuse
throughout the lifecycle, develops new parts, and provides training. As the scope broadens, the need for and
demands on a support staff grow. Such a staff can be invaluable in the technology and cuitural transition from
custom code development to widespread software reuse. They can provide the training and support needed to
alleviate risk to projects that are considering a parts-based approach to software development.

An organizationwide reuse support group that can assist projects in their reuse efforts can be a powerful means
of overcoming technical and practical (i.e., time and cost) barriers to reuse. Production projects frequently
cannot afford the time or resources it would take to begin a software reuse program. An organization-wide
reuse group can provide the expertise needed to begin a reuse-based software development process and lessen
risk of reuse, and can spread the cost of reuse over a number of projects.

163

MAXIMIZING SOFTWARE REUSE
OVERVIEW DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

15.8 Summary

The remainder of this section is organized as follows:

¢ Ada Language Considerations: This chapter includes a discussion of Ada language issues
that impact software reuse.

e Component Libraries: The role of component libraries in a software reuse effort is discussed
in this chapter. Desirable features, as well as ways to populate libraries are discussed.

« Application-Based Search and Retrieval: This chapter discusses the role of search and
retrieval mechanisms that facilitate early planning in reuse-based software development efforts.
These mechanisms basically provide access to the catalog at a higher level of abstraction than
traditional keyword searches.

« Software Construction Tools: Software reuse can be facilitated by tools that assist in the
tailoring and integration of reusable components. In this chapter, some of these types of tools
are discussed. The CAMP prototype component constructors serve as an example.

164

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ADA LANGUAGE CONSIDERATIONS

CHAPTER 16
ADA LANGUAGE CONSIDERATIONS

Ada was developed specifically to address the problems of software development for large mission critical sys-
tems. It was intended to provide a standard language and promote the practice of sound software engineering
practices, reducing the proliferation of implementation languages and lowering the cost of scftware production.
At the time Ada was first conceived, the number of languages used on various DoD applications had
proliferated into the 100s, and, in fact, even within a given project, multiple languages were in use {(sometimes
as many as 10 or more on a large project). This significantly increased the cost of development and main-
tenance because of the need to staff projects with personnel who know the sometimes obscure implementation
languages as well as the domain. Not only is the code not very portable or reusable, but neither are the
programmers. Costs can be redi'ced by using a single standard language for all DoD mission critical systems.
Programmers will know the implementation language and be able to perform development and maintenance
activities without having to learn both a new language and the application.

The Ada language embodies features that facilitate parts development and reuse. For example, the Ada pack-
age structure with the separation of interface (package specification) and implementation (package body)
facilitates information hiding and the development of "clean” interfaces, thus promoting reuse. The generic unit
allows development of a solution to a class of problems. For example, a generic queue package can be
developed without worrying about the types of elements that will be handled in the queue. The user of that
package then provides information on the type of elements he wants to queue, and the Ada generic facility will
produce the appropriate object code to handle that case. Much has been written on Ada's support for sound
software engineering practices, and the reader is referred to Reference {36} for more details on the features of
Ada that provide this support.

Although certain Ada language features have been highlighted as promoting software reuse, Booch (Reference
[6]) has pointed out that Ada does not really contain any features that have not been seen previously in other
programming languages, but within Ada they are combined in a single language. Pascal forms much of the
foundation of the Ada language, but lacks several features found in Ada, including private types, packages,
exceptions, generic units, tasks, and representation specifications.

Ada alone is not THE solution to the software problems that have plagued the DoD software development
community. Language features will not bring about a change in development and coding styles. There is
certainly nothing inherent in the Ada language that would prevent someone from writing very FORTRAN-like
applications, e.g., see Figure 16-1, although this would not be a good use of the available language features.
Figure 16-2 shows the same segment of code rewritten into “"good” Ada.

16.1 Efficic.acy and Effectiveness

The issues of language efficiency and effectiveness are distinct and must be addressed separately. Efficiency
issues include concerns about compiler maturity and whether any language constructs are inherently inefficient.
Effectiveness is concerned with whether the required operations can be implemented (easily) in the language.

The Ada language appears to be effective for RTE application. For example, the CAMP 11th Missile applica-
tion, which consisted of approximately 21,000 lines of code, required only 21 lines of assembly language code
to implement a complete missile navigation and guidance system. This demonstrated that it was possible to
provide the required functionality almost entirely within the Ada language.

165

MAXIMIZING SOFTWARE REUSE
ADA LANGUAGE CONSIDERATIONS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

PACKAGE BODY NAVOPS IS

TYPE FLVECTOR IS ARRAY(1..3) OF FLOAT;
TYPE LFLVECTR IS ARRAY(l..3) OF LONG_FLOAT;

ACCEL : LFLVECTR;
VEL : FLVECTOR;

QUAT : ARRAY(l..4) OF FLOAT;

BARALT : FLCar;
BARALTER : LONG_FLOAT;

FUNCTION DOTPROD (LEFT, RIGHT : FLVECTOR) RETURN FLOAT IS
ANSWER : FLOAT;
BEGIN
ANSWER := 0;
FOR I IN 1..3 LOOP
ANSWER := ANSWER + LEFT(I) * RIGHT(I);
END LOOP;
RETURN ANSWER;
END DOTPROD;

FUNCTION DOTPROD (LEFT, RIGHT : LFLVECTR) RETURN LONG_FLOAT IS
ANSWER : FLOAT;
BEGIN
ANSWER := 0;
FOR I IN 1..3 LOOP
ANSWER := ANSWER + LEFT(I) * RIGHT (I);
END LOOP;
RETURN ANSWER;
END DOTPROD;

END NAVOPS;

Figure 16-1: FORTRAN in Ada: Ada Language Features Do Not Force Good Design

Effectiveness should not be the sole criteria by which a language is judged. It must also be efficient if it is to be
used in real-time applications. Efficiency is largely a compiler issue rather than a language issue and is often
correlated with product maturity. This appears to be the case with Ada compilers. There do not appear to be
any features of the Ada language that are inherently inefficient.

16.2 Compilers

Ada compilers undergo a validation process before they can be labeled "Ada." The Ada Compiler Validation
Capability (ACVC) test suite is designed to ensure a certain level of quality and confidence in Ada compilers,
and to a large extent, has succeeded. It is impossible for the ACVC to check for all valid combinations of all
language features, thus validation ensures that required language features are present and operate individually
as expected, but it does not ensure that complex variants or combinations of features work correctly. As a
result, even validated compilers can produce erroneous code.

In order to avoid problems during development, a project should benchmark their compiler for desired features
and combinations of features. For example, on a project that consists of all custom-built code, generics may
not be used, thus the project would not need to concern itself with the correctness and efficiency of Ada
generics. On the other hand, reusable Ada code will, most likely, make heavy use of Ada generics, so on a
reuse-based Ada project, the compiler’s ability to handle generics would be crucial.

166

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ADA LANGUAGE CONSIDERATIONS

generic

type Elements is digits <>;

type Indices is (<>);
package Vector Operations is

type Vectors is array (Indicea) of Elements;

function Dot _Product (Left : Vectors;

Right : Vectors) return Elements;

end Vector Operations;

package body Vector_ Operations is
function Dot Product (Left : Vectors;
- Right : Vectors) return Elements is
Anawer : Elements := 0;
begin
Add _Up_Square of Elements:
for I in Vectors’RANGE loop
Answer := Left (I) * Right(l) + Answer;
end loop Add_Up_Square_of Elements;
end Dot_Product;
end Vector Operations;

package Basic_Data Types is
type Meters per_ Second 1is digits 6;
type Meters is digits 6;
type Seconds is digits 6;
type Meters per_ Second2 is digits 9;
type Navigation_Indices is (East, North, Up);
type Quaternion_Indices is (Q0, Ql, Q2, Q3);

package Distance_Vector Opns is new Vector Operations
(Elements => Meters,
Indices => Navigation_Indices);

subtype Distance Vectors is Distance Vector_Opns.Vectors;

package Velocity Vector Opns is new Vector_Operations
(Elements => Meters per_Second,
Indices => Navigation_Indices);

subtype Velocity Vectors is Velocity Vector_Opns.Vectors;

function "*" (Left : Meters per Second;
Right : Seconds) return Meters;

function "*" (Left : Meters_per Second2;
Right : Seconds) return Meters per Second;

function "/" (Left : Meters;
Right : Seconds) return Meters_per Second;

function "/" (Left : Meters_per_ Second;
Right : Seconds) return Meters per Second2;
end Basic Data_Types;

with Basic Data_Types;

package body Navigation Operations ia
package BDT renames Basic_Data_Types;
Accel : BDT.Acceleration_Vectors;
Vel : BDT.Velocity Vectors;

end Navigation_Operations;

Figure 16-2: Utilization of Ada Language Features

167

MAXIMIZING SOFTWARE REUSE
ADA LANGUAGE CONSIDERATIONS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Many of the features that make Ada good for development of reusable software are also the most difficult for
compilers to handle correctly and efficiently (e.g., generics, tasking, separate compilation, memory utilization).
Thus, although it appears that Ada is effective for RTE applications, compilers must be evaluated to determine
if they can effectively and efficiently handle the constructs needed for reusable software. Compiler benchmark-
ing prior to software development can identify problem areas or inefficiencies, and allow the designers to work
around them. Developers must know their compiler!

More specific examples of compiler problems have been documented in Reference [31], the CAMP-2 Final
Technical Report. As Ada compilers mature, many of these problems should be resolved. If these inadequacies
are not rectified, they could have a significant negative impact on the future development and use of reusable
Ada software.

The CAMP 11th Missile work highlighted the need for mature compilers and highly optimized object code for
RTE applications. The 11th Missile development team, which targeted a 1750A microprocessor, spent a sig-
nificant amount of time debugging their validated compiler. The team uncovered 153 errors during testing; 96
of these were compiler errors. The major problems were with the handling of Ada generics and were related to
the compiler’s inability to handle complicated generics and the inefficiency of the generic instantiations (single
body implementation). Many of the generic parts that were being incorporaied into the application had to be
manually instantiated, i.e., the generics had to be converted to non-generic code (see Reference {31}). Other
problems encountered on the 11th Missile effort were with tasking {the second most prevalent cause of
problems); visibility rule problems were a close third. Problems with separate compilation and storage utiliza-
tion were also encountered.

In fact, because of these problems, the raw effort data without adjustment for compiler immaturity (i.e., for
extra time required for testing and code modifications, such as manual instantiation), showed an 18% decrease
in productivity, although after adjusting for the extra testing effort due to compiler problems, the project
showed a 15% increase in productivity. These numbers give an indication of the impact of compiler im-
maturity.

Versions of the CAMP parts were submitted to five validated comnpilers and one pre-validated Ada compiler. Of
these six Ada compilers, only one validated compiler was able to handle the parts submitted to it, and even that
one was able to do so only after a year and a half of the CAMP team working with the vendor. Other software
developers have encountered similar problems with validated compilers.

It is clear that compiler problems can negate the benefits of software reuse. Full productivity gains of parts-
based software development will not be realized until compilers reach a level of maturity such that they do not
cause development problems.

16.3 Chapter 13 Features

Chapter 13 of the Ada Language Reference Manual (see Reference [15]) describes language features that are
largely system/implementation dependent, and many have considered them optional. The implementation-
dependent nature of these features has made cost-effective testing by the ACVC difficult. Some features are
now being tested in the validation suite.

The CAMP 11th Missile Application team found that these "optional' Ada features are not really optional in
reuse-based RTE software systems. Table 16-1 lists the Chapter 13 features and indicates the ones which were

168

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS ADA LANGUAGE CONSIDERATIONS

used on the CAMP 11th Missile development effort. Although many of the features could have been used,
there were work-arounds for most of them. This is discussed in more detail in Reference {31], in the chapter
entitled Evaluation of Ada and Its Use in the 11th Missile Application.

Table 16-1: Use of Chapter 13 Ada Features by the CAMP 11th Missile

Option LRM Used Not Used
Length Clauses 13.2
Size
Integer X T
Enumeration X
Fixed Point X
Floating Point X
Record X
Array X
Access X
Storage_Size X
Small X
Enumeration Representation 13.3 X
Record Representation 134
Alignment X
Component X
Address 135
Objects X
Subprogram X
Package X
Task X
Entry X
Change of Representation 13.6 X
Package Systern 13.7
Named Numbers 13.7.1 X
Representation Attributes 13.7.2 X
Representation Attributes of Real Types 13.7.3 X
Machine Code Insertion 138 X
Interface to Other Languages 139 X
Unchecked Programming 13.10
Unchecked_Deallocation 13.10.1 X
Unchecked_Conversion 13.10.2 X

16.4 Ada 9X

The Ada revision process is currently underway and is scheduled for completion in 1993. This process includes
revision of the language standard, standardization (ANSI and ISO approval, DoD adoption), and transition (up-
date ACVC, training, etc.). Many factors must be considered during the updating process (Reference [1)):

169

MAXIMIZING SOFTWARE REUSE
ADA LANGUAGE CONSIDERATIONS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

o Language coherence as new features are integrated into the existing language

o Upward compatibility between the language standards so that existing applications are not made
obsolete

e Impact of major changes to the standard, as well as to application development
« Impact of changes on compilers and object code

¢ Minimization of changes to the language definition

¢ The needs of various types of development efforts (e.g., RTE, reuse-based, etc.)

 Training needs

170

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS COMPONENT LIBRARIES

CHAPTER 17
COMPONENT LIBRARIES

A library is an essential element of a viable reuse-based software development methodology. It is a central
facility for storage of information about reusable components and serves to overcome one of the primary bar-
riers to software reuse: lack of adequate information about available components at a reasonable cost. A
component catalog provides both a means to organize reusable resources, and mechanisms for search and
retrieval of cataloged components. This type of facility has been referred to as a catalog, a library, a
repository, and a retrieval system. Various authors have tried to distinguish among the terms, but here they
are used interchangeably.

One reason for the failure of past software reuse efforts was that potential reusers were not aware of available
parts and/or could not obtain sufficient information in a cost-effective way to conclude that the parts should be
reused in their application. The key point here is cost-effective. If a potential reuser estimates that the cost of
reuse is a significant percentage of the cost to develop from scratch, they will (barring other factors, such as
customer or management mandate) develop from scratch. Reuse cost metrics are being developed, but most
potential reusers still develop guesstimates. Software developers tend to over-estimate the cost to reuse and
under-estimate the cost of custom development. The user must be provided with sufficient information about
software parts in order to determine their applicability and evaluate the cost to use them. Some library systems
have tried to develop a means to assist the user in evaluating components for a given application over and
above simply providing descriptive information about the component (References [35], [10]).

A significant amount of work has been done in cataloging, and a wide range of alternatives has been both
proposed and developed. A catalog can range anywhere from a hard-copy listing of available components to a
sophisticated, on-line, distributed system that is integrated with other software development tools (Reference
[33]). There is a broad range of features and facilities that can be incorporated; some of these are discussed in
more detail in subsequent paragraphs. Because reuse is and will be practiced at many different organizational
levels (e.g., project, company, corporate, industry), there may be variations in requirements for libraries that
support these different levels. Despite this range of variability that is possible and will be needed, user feedback
is critical in the process of defining and refining the features and facilities that are actually needed to support
widespread software reuse.

A catalog system can boost productivity by providing the infrastructure needed to support reuse, making parts
easy to locate, and facilitating the incorporation of those parts into an application. In other words, a catalog
system can reduce the cost of reuse. Locating parts can range from simply telling the user where the source
code for part XYZ can be found, to actually helping the him identify that he wants to use part XYZ and
compiling that part for him.

A catalog system can provide —
» Means to identify potentially applicable parts
¢ Means to locate reusable components

* Means to evaluate reusable components. This can be as simple as providing descriptive infor-
mation about the parts, such as functionality, space and timing requirements, restrictions, depen-
dencies, etc., or as complex as trying to determine the differences between component require-
ments and user requirements.

171

MAXIMIZING SOFTWARE REUSE
COMPONENT LIBRARIES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

¢ Means to retrieve reusable components

 Test information, including test procedure, test code, test results
o Comments of other users

¢ Use and cost metrics

e Automated data entry

» Support for configuration control

o Integrated set of functions

o Flexible classification scheme

17.1 Scope

Because software reuse can be practiced at many organizational levels, catalogs must also exist at these dif-
ferent levels. Catalogs can be developed for a particular project, company, corporation, or community (e.g.,
the DoD mission critical software development community). The scope of the catalog will impact features that
are affected by user diversity which, of course, increases as the scope is broadened. For example, the type of
user interface that will be acceptable or necessary will change as the scope changes. User interfaces are an
important consideration in library development, particularly as software engineers become increasingly accus-
tomed to multi-window graphical interfaces in their other software engineering tools. Other factors include
security requirements and access control, accessibility, robustness requirements, and covered domain.

Scope affects support needs as well. For example, a catalog that is intended for use by a project or small
company may need just a librarian to verify that coding and documentation standards have been met before a
part is added to the catalog. Other cursory checks could include checking for test documentation and results.
A large-scale community-wide or corporate-wide library might require a significant staff to not only check code
and documentation for compliance with standards, but also perform independent testing, assess the value of
parts, assist users in the use of parts throughout the lifecycle, develop new parts, and provide training. Such a
staff could serve as the focal point for technology and cultural transition from custom code development to
widespread software reuse. They could provide the training and support needed to alleviate risk to projects that
are considering a parts-based approach to software development.

Scope impacts libraries in another way, as well. As the scope broadens, the issue of who bears the cost for
development of new parts, maintenance and enhancement of existing parts, and user support may become
significant. If the library is for DoD mission critical application developers, should the government fund it or
should the contractors contribute to its support? Similarly, if the repository is corporate-wide, should the cor-
poration pay for it or should the constituent companies fund it as long as they benefit from it?

If catalogs or libraries exist at a number of different levels (e g., at the project, program, company, and spon-
soring agency), a feedback mechanism is needed to keep the higher-level libraries populated with relevant com-
ponents. Projects need to analyze their applications for areas of commonality, and once those areas are iden-
tified, they need to develop reusable components and make those components available to other developers.
Projects that are using a reuse-based development approach should also revisit the domain analysis and model
(if they exist) to determine if modifications or additions are needed (Reference [22]). Project inputs are an
excellent way to enrich an existing parts set and keep libraries populated with relevant parts.

172

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS COMPONENT LIBRARIES

17.2 Library Users

A library serves both the parts developer: and the parts users. The users may have diverse backgrounds and
levels of expertise — some may be domain experts, while others may be software engineers. A library for
reusable software components is much like an ordinary library. It provides an orderly repository and a means
of managing and accessing available resources which, in the case of software reuse, may include deliverable
code, requirements, design, test support, and documentation.

17.3 Library Entities

There are many trade-offs to consider when establishing a catalog arnd when evaluating one for use. It is easy
to fall into the trap of wanting or trying to provide for ail possible types of software entities and their represen-
tations. Reuse today is practiced primarily at the code level, although supporting lifecycle products should also
be available in order to aid understanding and evaluation of the component, and to eliminate the need to
reproduce them. As reuse expands to other lifecycle objects, the usefulness of cataloging these other entities
(such as requirements specifications, designs, test procedures, etc.) and their various representations will in-
crease.

Even when cataloging code-level entities, a decision must be made as to whether logical or physical entities will
be cataloged. For example, during the prototype CAMP catalog development effort, Ada package specifica-
tions and bodies were cataloged separately. This proved to a burden for the user who received too much data
when performing queries (i.e., a query would return both the specifications and bodies that matched the query,
resulting in twice as many "matches” being returned). During the re-engineering effort, a different approach
was taken so that logical entities could be cataloged rather than physical entities.

The scope of the target library must be considered when identifying candidate components for inclusion in the
library, i.e., the types of parts that will actually be reused will vary with the scope of the catalog; scope can
affect both the types of entities that may be reused and the amount of reuse that an entity will see (Refe- ‘nce
[33)). For example, if a requirements document were produced on a project and then the project were can-
celled, that document could be reuse (with adaptation) for a similar project if there was knowledge that it
existed. It is most likely that the document would see reuse only within the same project group. Unless there
was significant tool support, it would probably not be cost effective for other organizational groups to reuse that
software entity.

17.4 Catalog Technologies

Because catalogs can range from simple to complex, the technologies required to support their implementation
and use are also wide-ranging. A catalog that consists of a hard-copy listing of available components and their
attributes can be produced with a simple editor and printer. At the other end of the spectrum, are knowledge-
based and hypertext-based systems that allow complex queries about cataloged components and their inter-
relationships with other cataloged components. Thus, the enabling technologies include editors, database sys-
tems, information retrieval systems, user interfaces, knowledge-based system development, hypertext, etc.

Rudimentary catalog facilities can be implemented via a simple database capability, but there is basically no
upper bound on the complexity of such a storage and retrieval system. Obviously, the more features incor-
porated into a catalog, the greater the cost. There are effective catalogs available that can be easily obtained
and used by an organization or project. For example, the CAMP project has developed and distributed a
catalog scaled for project or company use. It is implemented in Ada and incorporates no commercial third-

173

MAXIMIZING SOFTWARE REUSE
COMPONENT LIBRARIES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

party software products; system dependencies have been minimized and isolated. These factors broaden the
base of potential users. It is important to remember that, although there may be a number of groups develop-
ing reusable software, not every group has to develop their own catalog system; they can acquire existing
catalog frameworks in which to store their components. Note the similarity between catalog development and
reusable software:

¢ The fewer external dependencies, the more reusable the software

¢ A catalog can be used across domains

17.5 Screening of Parts

Prior to entry into the catalog, parts should be evaluated to verify that they meet some minimum tevei of
acceptability. This is the function of a "parts librarian.” Whether this function is actually embodied in a dist:nct
individual is dependent upon the size and scope of the library and the use it sees. Components should not be
added randomly to a library — it is critical to the success of any reuse effort that available components meet
certain quality standards or, at the very least, that the quality of the parts be captured as an attribute value for
each component entry.

Screening should include —
o Verification of correctness of part
« Standardization of descriptive information (both type and quality)
o Classification of the component by category, identification of keywords

e Distribution of update notices (this could be done with the assistance of the catalog system which
could keep track of all users of parts and automatically notify them via a network of any relevant
changes)

¢ Configuration management (e.g., limitation on proliferation of component variants)

Screening will increase both the start-up and sustaining cost of software reuse. The absence of any screening
will most likely result in a library whose contents are largely unused — the risk of using them may well be
cost-prohibitive to most projects. The amount of screening performed must be weighed against the cost of
doing it and the benefits received. Some organizations will not be able to validate all of the components
submitted for entry into their library, and perhaps because of the sophistication of their users, their reuse efforts
will not suffer.

17.6 Entry of Parts

One tedious task associated with maintenance of a parts catalog is the entry of component information into the
catalog. Automation of this data entry task can facilitate library maintenance and is feasible if all of the com-
ponents are in a standard format so that information could be automatically extracted from code and associated
lifecycle products. Conflicts in documentation and coding style arise when parts sets are merged, thus full
automation of catalog entries does not appear immediately feasible. One possible solution to this is that no
parts are allowed into the catalog until they contain a standard header. This significantly increases the effort
required to maintain a catalog, although there may be benefits to the end-user. Manual entry of part data is
time-consuming and error-prone.

174

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS COMPONENT LIBRARIES

17.7 User Support

Several researchers have identified the need to provide the parts user with assistance in evaluating available
parts. This should consist of more than providing keyword and other attribute searches, and is particularly
critical as libraries expand and more parts, at least superficially, appear to provide similar or identical
capabilities. As the number of available components increases, it will be increasingly important to provide a
means to distinguish between similar components. One approach is to only catalog "generic" components, i.e.,
components that provide a solution to a class of problems, and then provide the user with a means to generate
a specific instance. This approach is an extension, of sorts, to the Ada generic facility.

Users will need training in reuse-based application development. They will need to learn how to most effec-
tively identify and incorporate reusable components into their applications, and how to estimate the cost of
reusing a particular component.

17.8 Part Attributes

There has been some debate about the types of information that should be kept about a software part. It is of
concern both to library developers and users. Two approaches are summarized here.

¢ Don'’t repeat in the catalog what the user can get from the code headers and the source code
itself. The justification for this approach is that the user will look at the code anyway, so why
repeat the information. Just the essentials should be kept in the catalog entry, and the user should
look at associated lifecycle objects (LCOs) for any remaining information that he needs.

e Provide a complete picture of the part in the catalog so that user does not have to go to other
LCOs unless he wants significantly more detail
Regardless of the approach taken, catalog attributes must capture both what the resource is and what it does
(i.e., both semantic/functional information). The catalog should provide information on related lifecycle en-
tities, such as requirements, design, source code, test code and test data, etc., as well as on the component
itself.

Feedback from users of the parts should also be maintained in a parts catalog . This can serve two purposes:
(1) it provides future users with additional information on how a part worked out in an actual application, (2) it
provides feedback to parts developers on areas for improvement or areas where they excelled.

There are several sources for attribute information:

* Component Developer: He may enter or provide information gathered as the part was designed,
implemented, and tested.

¢ Reusable Component: The component itself contains basic information (e.g., in a code header)
that may be entered automatically or by a data entry person.

¢ Catalog/Library System: Certain attributes can be deduced by the library system. For example,
part number and revision number can be generated, as can the last change date of the entry.

A catalog should provide information on efficiency of the components, environmental requirements, usage
restrictions, usage instructions, location of documentation and source code, as well as test code and data, and
other user's experiences with the parts. It should also contain the parts themselves or pointers to them. It
should capture information about inter-relationships between cataloged entities, as well as information about
attributes of a particular entity. Entities can be related in any number of ways. For example, a high-level
reusable component may be a composite of lower level components. In this case, the user may want to know
the components that comprise this one. Additionally, there are software lifecycle objects associated with each

175

MAXIMIZING SOFTWARE REUSE
COMPONENT LIBRARIES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

lifecycle activity (e.g., requirements specification, design, etc.) and each of these may have one or more
representations. A catalog should allow the user to navigate through the related lifecycle objects.

When entering component data, care should be taken to avoid proliferation of enumerated attribute values such
as keywords. This will facilitate more accurate search and retrieval of components. For example, if keywords
could be randomly selected whenever a component was added to the library, the situation could arise where
some components were described by the keyword Math and others were described by the keyword
Mathematical, and there would be no overlap in searching by specified keyword. There are several ways to
overcome this problem:

¢ Have a controlled list of keywords that must be used when describing a component.

e Provide for synonyms and/or a thesaurus.

e Provide for partial searches/matches.

17.8.1 Classifying Parts

There is no consensus on how parts should be classified. Approaches decompose into two broad categories:
one a fixed, enumerated classification scheme, and the other a flexible, faceted scheme. In the first approach,
all of the categories for a particular domain are pre-determined and applied as new parts are added. This
approach has the advantage that it is straightforward and relatively easy to implement. Prieto-Diaz and
Freeman (see Reference [35]) took a different approach and proposed the use of a faceted classification
scheme; this approach was first used in library science. Construction of classification categories is based on a
synthesis process rather than having the categories enumerated in advance. Faceted classification schemes
tend to be more flexible, but less straightforward to implement than enumerated schemes. Types of classifica-
tion were discussed in Chapter 3.

17.9 Populating Libraries

Alternative library population techniques have been proposed:
» Systematic population that begins with a thorough domain analysis and proceeds through com-
ponent development and cataloging
* Ad hoc or opportunistic population

¢ Systematic scavenging
These approaches can be used regardless of library scope, although there are pros and cons to each of them.

Systematic population has the potential for the greatest gain, but it also has the potentiai for the greatest
required investment. Because it involves a systematic examination of domain of interest, there is a greater
possibility of developing high-level reusable components that will have significant payback. The cost of this
type of effort is generally relatively high. It requires the services of both software engineers and domain ex-
perts, and is time-consuming process with no well-established methodology. See Chapter 3 for more details.

The cost of ad hoc or opportunistic population techniques is relatively low, but the potential payback is also
relatively low. With an ad hoc approach, components are added to a library as they are "discovered.” One of
the drawbacks of this approach is that there will be no uniform standards (e.g., coding or design standards)
under which all of the components of a library will have been developed. This may increase the cost of reusing
the components as they will have a less uniform presentation. If components are "brought up to standard," the
cost of populating the library increases. Another drawback to this approach is that there may be gaps in the
domain coverage provided by the reusable components, i.e., there may be some areas of the domain that are

176

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS COMPONENT LIBRARIES

relatively well-covered, and others that have no coverage at all. Additionally, because the components were not
systematically developed to work together, there may be integration problems.

Systematic scavenging falls somewhere between systematic and ad hoc population. Systematic scavenging
implies that there is actually some organization or individual that performs the scavenging and converts (if
necessary) these scavenged objects into reusable entities. Scavenging can take the form of reviewing existing
systems for candidate parts, attending walkthroughs, etc. Generally, components gathered in this way will
require additional effort to make them reusable. For instance, they may require generalization and/or ad-
ditional documentation. The cost of populating a library via this mechanism will generally be lower than if it
were done via a domain analysis, although again, the coverage of the domain may not be as complete and
there is generally a relatively hefty cost involved in making components reusable.

Consideration must be given not only to initially populating a library, but also to sustaining the library with
reusable components. To this end, components need to be added in order to maintain domain coverage and to
expand into additional domains. Projects are often the best source of inputs for library additions. They are
close to the problem domain and, with appropriate reviews, can identify where additional reusable components
may be needed. These additional components can be developed by project personnel if they have sufficient
resources plus specialized parts development expertise, or by a project-directed component development group.
Component development organizations are discussed in greater detail in Chapter 8.

17.10 Library Evaluation Criteria

Some factors to consider when evaluating a catalog or library are enumerated below.
¢ Growth potential
- Can the library expand to accommodate a growing collection of reusable software com-
ponents?

- Can the library accommodate multiple types of software components (e.g., code, design,
requirements)?

- If the library is for code parts, can it accommodate multiple languages

- Can the library be easily extended to accommodate types of reusable components that are
not yet planned for (e.g., state charts, test procedures, ERA diagrams)?

- Can the library be easily integrated with other software development aids?

- Does the library support partitioning into multiple levels (e.g., project library, program
library, company library)?

- Does the library support partitioning by domains, by projects, or by some other criteria?
¢ Usability
- What are the hardware and software requirements? Is third-party software required to sup-

port library operations? Is it tied to a particular hardware platform? Or is it (relatively)
portable?

- What are the storage and memory requirements?

- What is the response time? How will increases in the size of the collection affect perfor-
mance? :

- Can relationships be specified between cataloged components and between represen-
wations of a given component (this can facilitate locating the desired representation of a
component)?

177

MAXIMIZING SOFTWARE REUSE
COMPONENT LIBRARIES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

- Can alternative representations of a given component be generated (e.g., given a code
component, can the design be generated, d vice versa)?

+ Human Factors Considerations

- Is the system easy to use? Does the interface facilitate rather than hinder system use? Is
there adequate documentation? [s there context-sensitive on-line help?

- Is the system usable by personnel with diverse levels of expertise?
- Is the interface consistent?

- Are alternative user interface paradigms supported (e.g., natural language, structured
Jueries, graphical queries)?

- Is background processing of lengthy queries supported?

- Is there "carry-over" between the functions in the library, i.e., if one function returns a list
of parts, can that list be used in any other function that operates off of a list?

- Are there browse facilities? l.e., can the user start at part X and browse through the
catalog? Are there alternative ways to browse? E.g., can he start at Part Number X? Can
he browse through all items in a list?

-Is the catalog tied to the total software environment? Does it include configuration
management functions? Is there a mechanism for generating/sending update notices to
users? Is there a mechanism for obtaining user feedback?

- Is hard-copy output supported in addition to interactive output?

- Is there automated tracking of catalog utilization? Le., number of uses, number of hits,
problem reports?

- Is automated documentation production supported?
- Does the system support compilation, execution, editting of components of just retrieval?
- Is there a mechanism for standards enforcement?

¢ Maintenance
- Is the entry of component attribute information manual or (semi-Jautomated?

- Are there consistency and correctness checks on the data entered into the catalog?
- Is there access control to the cataloged data and to the catalog functions?

- How are the maintenance and end-user functions partitioned?

- What type of support is needed to sustain the library?

o Component Evaluation Support

- Is sufficient information provided about each cataloged component to allow the user to
make an informed decision to use the component? E.g., are benchmarks provided? Is
there data about efficiency? Reliability?

- Can the attribute values be easily examined?
- Can the reusable components themselves be examined and retrieved?
- Can multiple representations (or views) of a cataloged entity be examined or retrieved?

- Is the classification structure sufficiently rich to handle all domains that may be needed at
sufficient granularity to make searching productive?

- Are size and complexity metrics maintained/available?

178

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS COMPONENT LIBRARIES

¢ Search
- Are there multiple ways to identify candidate components, e.g., attribute values, facets.
classification scheme, domain-based search, application-based search?

- Does the library support multiple selection criteria and logical operators (i.e., ANDing,
ORing, NOT, FOR_ALL, FOR_EVERY)?

- Are textual fields searched? E.g., would the functional abstract field be searched for a par-
ticular keyword?

- Are the following types of searches supported: search by enumerated item, search by
string, search by substring

17.11 Case Study: The CAMP Catalog

The CAMP program has been concerned primarily with reuse of code parts and their associated documentation
and test objects. To this end, the CAMP catalog was designed to racilitate obtaining information about code
parts, including functional, performance, and usage data, as well as information about the location of source
code, their requirements, design, and testing. Each catalog entry is described by a number of attributes (see
Figure 17-1). Attributes were classified as either required or recommended, thus, values may not be found for
all of the attributes for all of the parts. Some of attributes are rather costly to obtain. For instance, perfor-
mance data (e.g., source size/complexity characteristics, timing, fixed code object size, and accuracy infor-
mation) requires that benchmarks be run to obtain this data. The type attribute describes the type of entity that
is cataloged, for example, schematic parts, operational parts, etc. This attribute is site-tailorable, so that, al-
though the remainder of the attributes are intended to support code components, the catalog could be used for
other types of entities.

During the CAMP program, two versions of a component catalog were produced. The first was a prototype
that was geared specifically toward the CAMP components. The second, re-engineered version is suitable for a
broad range of domains. Both versions were scoped primarily for project or company use, and included func-
tions to add, modify, delete, and print catalog part entries; search for parts; examine part entries and part code;
and retrieve parts. The goal of the re-engineering effort was to produce a more robust, all-Ada version of the
prototype CAMP catalog, and to provide enhanced functionality based on lessons-learned with the prototype.
For example, site-tailorability of some catalog attributes was added during the re-engineering effort.

The prototype CAMP catalog contained separate catalog entries for Ada specifications and bodies, as well as
for structuring packages, resulting in over 1100 catalog entries, although there were only 454 CAMP Ada
parts. This organization was problematic for the potential reuser — there were too many similar entries,
making it difficult for the user to find potentially applicable parts. This directly contradicts one purpose of a
catalog, which is to lower the cost of reuse by facilitating the acquisition of information about available parts.
The redefinition of the type attribute during the catalog re-engineering effort corrected this problem.

During the CAMP program, a specific domain — missile operational flight software — was examined, leading
to the development of a hierarchical, domain-specific classification scheme for the parts (see Figure 17-2). The
prototype catalog incorporated this classification scheme, and required code modifications in order to change it
in any way. In the re-engineered catalog, the taxonomy was made both site-tailorable and modifiable. For
example, if a site starts out with only the CAMP parts, the CAMP parts taxonomy may suffice, but if another
set of parts for a different domain is acquired, the taxonomy will have to accommodate those parts as well.
The re-engineered CAMP catalog can handle this situation and accommodate both classification schemes. The
keyword field can be used to handle other classification data.

179

MAXIMIZING SOFTWARE REUSE

COMPONENT LIBRARIES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS
REQUIRED RECOMMENDED
ATTRIBUTES ATTRIBUTES
¢ Part Number » Dependencies
¢ Revision Number * Design Documentation
¢ Part Name « Design Issues
» Taxonometric Category ¢ Developed For
¢ Functional Abstract o Keywords
o Type ¢ Lines of Code
 Last Change Date of * Location of Source Code
Entry * Location of Test Code
¢ Development Date » Performance Notes
* Developer ¢ Requirements
» Govt. Sensitivity Level of Documentation
Entry/Part e Remarks
¢ Organization Sensitivity » Restrictions
Level of Entry/Part ¢ Revision History
* Withs + Sample Usage
» Withed By « Statement Count
* Used By
¢ User Comments

Figure 17-1: CAMP Catalog Parts Attributes

Another feature of the re-engineered CAMP catalog is the use of reference lists for attributes such as
keywords, developers, and users. When parts are entered into the catalog, only values already in the reference
lists are considered valid for those attributes. This promotes uniformity in the catalog entries, and facilitates
search and retrieval of parts by limiting proliferation of attribute values. Initial reference lists are established at
catalog installation time, and can be modified once the catalog is in place.

A batch interface was added to the re-engineered catalog primarily to provide the user with an efficient means
of entering large quantities of data. It can also facilitate the addition of automated data entry if a catalog site
would like to add this feature at some time.

180

Awouoxe] sued JWVO :g-L1 24nbig

MAXIMIZING SOFTWARE REUSE
COMPONENT LIBRARIES

181

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

3 —LM_OU
o I cret |)
g9l
:;-
anawcan | | e
Lol
:gsv
ussuse 17El .IA
991 j
Vi
UOISI3A! pasoiyeq
g | zer
Sl
1w pnunzy
ree IFpues
erel 14 yer [
H
1s19AU00) ch vounsion
et rrel || ezl [
ousg | |awnpioon
7Tl 1791 navi lomuo) Jopdomny ol S Sunuog
povap L 1 v I'ret qoN |
T91 7l Tl
Z
v w Suusarg AN,
iy .__«_ raodkem e] uoneng |
sl Iy 1Tl
z y. Vi
sad, saowpsu] jonuo) lotuo) ¥ 3y vord
L] waudinby Tl Y pinSuo) piny ummey .N.“:z
81 U <1 v €1
| | | |] 1 |
dNVD

MAXIMIZING SOFTWARE REUSE
COMPONENT LIBRARIES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

182

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS APPLICATION-BASED SEARCH and RETRIEVAL

CHAPTER 18
APPLICATION-BASED SEARCH and RETRIEVAL

The potential reuser should be provided with a tool that allows multi-level access to available reusable com-
ponents. For instance, a basic catalog with a relatively straightforward querying capability is sufficient for users
who have a fairly clear idea of the types of parts they are looking for. In order to assist the system designer and
requirements analyst in the identification of potentially applicable parts early in the design cycle, a different view
into the catalog may be necessary. The user should be able to interact with the catalog at an application or
domain level rather than at a component level. This type of functionality was demonstrated during the CAMP
program in the AMPEE System Parts Identification functions.

Application-based search and retrieval facilities provide high-level access into a parts catalog. They are in-
tended for use by a system or software engineer early in the system/software development cycle — as early as
during proposal development or during system requirements and design. The goal is to allow the user to
identify candidate software parts based on the project-specific requirements rather than on specific component
attribute values. This requires some type of mapping between the user's application requiremens and the
reusable components’ requirements. The use of formal specification languages for both parts and applications
has been considered as a way to facilitate this mapping, but it is generally considered to be too great a burden
on the user at this ime — it forces the user to learn yet another language. Their use has been advocated
primarily because it may be possible to more precisely map application requirements to parts if the require-
ments of both the parts and the new application are rigorously specified.

This type of tool is not essential to a reuse effort, but it can help maximize reuse. It can facilitate "make or buy"
trade-offs by providing information on software that is already available (i.e., can we "buy" it} or do we have to
make it (i.e., develop it from scratch)?? Components can also be identified for rapid prototyping and
benchmarking, thus facilitating sizing and timing studies. Awailability of parts can impact cost, thus this type of
tool can facilitate development of cost estimates. It can also be used as a training aid for new personnel.

There are two approaches to this type of parts exploration: an architectural approach and a system, or ap-
plication, approach. The architectural approach provides the user with a model of the software for the domain
of interest and allows him to traverse it, identifying potentially applicable parts at any node of the model. This
approach looks at the structure of the software and the subsystems that comprise the application domain. The
system, or application, approach requires input about the user's application; potentially applicable parts are
then identified for him. It looks at the system requirements for the application. Both approaches require that
domain-specific knowledge be captured within the function. One is based on the assumption that there is a
common software architecture for a class of applications. The other is based on knowledge of the domain, the
available parts, and their relationships.

The value of these functions over a catalog with a simple querying mechanism is that the user does not have to
know specifically the parts, or types of parts, that he is looking for. He can interact with the functions at a
system level, which is more appropriate early in a software development effort. Once parts are identified via
these functions, more detailed descriptions can be obtained by querying the catalog directly.

Both approaches to parts exploration were prototyped during the CAMP program. They were targeted at the
CAMP parts and the missile operational flight software domain, but the concepts are broadly applicable.
Within the CAMP prototype, these approaches were referred to as Application Exploration and Model

183

MAXIMIZING SOFTWARE REUSE
APPLICATION-BASED SEARCH and RETRIEVAL DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Walkthrough. Figure 18-1 depicts these use of the Application Exploration function, and presents a concep-
tual overview of this the Missile Model Walkthrough function.

{ Application Exploratloﬂ

NORTH-POINTING
NAVIGATION

USER
REQUIREMENTS

IST OF APPLICABLRE
PARTS

P11
P37-3
P47
P159
S8,

CONVENTIONAL
WARHEAD

L Missile Model Walkthrough J

PARTS
CATALOG

J

Pst UST OF APPLICABLE PARTS

PG
P37.3
P&TS-
P15¢

HIERARCHICAL pa3r2
SOFTWARE MODEL

AAAAAANS

Figure 18-1: CAMP Parts Exploration Approaches

The application approach (which was captured in the Application Exploration function) contains knowledge of
both the parts and the application. For example, in the CAMP prototype, if a user indicated that his target was
a ship, then the system would know that he needed a seeker (application knowledge) and that if he needed a
seeker, then he could use CAMP math parts, the Data Bus Interface Constructor, and the Finite State Machine
Constructor in the implementation of the seeker (knowledge about the relationships between parts and the
application). This illustrates the application of both rule-based and parts-based reasoning within this function.

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS APPLICATION-BASED SEARCH and RETRIEVAL

The architectural approach was embodied in the Missile Model Walkthrough function. Figure 18-2 illustrates
the CAMP missile software model. This model of missile flight software is based on knowledge of the software
parts required for previously developed missiles, i.e., based on past experience, it has been determined that
most, if not all, missiles of a given type, e.g., anti-ship missiles, require a particular set of software parts, and
this set of parts form a hierarchical structured model of software parts required for a particular type of missile.
For example, a user who knows he will be working on a navigation system, would begin exploring at the
highest level of the model for navigation. The function would then guide him through the available parts, using
information from the parts catalog. From navigation, he could move down to operational parts, then into
either vector operations or trigonometric parts. If he chose trigonometric parts and knew he would need a sin
function, the system would return a list of parts on that category for sin function. Figure 18-3 presents an
example of how this function might be used; the Advanced Medium Range Air-to-Air Missile is used as an
example. The user’s inputs are shown in the box on the lefthand side, and the categories of parts that would
be selected are shown in the box on the righthand side.

SYSTEM l MISSILE I

- e =

TUNCTION I smrnowﬂ Im\vmu'on I AUTOPILOT | |WAYPOINT

PART PACKAGES |[-QUAT COMMON PITCH [nmmc _ SCALE _ MATH
L po WANDER SIGNAL L pata sTR |_xQuUIP
L cvva

Figure 18-2: CAMP Missile Software Model

ADVANCED MEDIUM RANGE AlR-to-AiR MISSILE (AMRAAM)

Launch : Adr

Target t Adr

Range : 25+ WM

Warhead : Conventional

Aiding : No

Routing ¢ AMr

Seaker : Active Radar

Aerodynamics : Standard

Navigation : Standard

Interfaces : Data Link PARTS SELECTED
Navigation
Kalman Filter
Autopilot
Communications
Air Data

Coordinate Vector Matrix Algebra
S8ignal Processing

Dala Souce: Jane's Weepon Sysiems, 1986-1087, pp98-200

Figure 18-3: CAMP Missile Model Walkthrough Example

185

MAXIMIZING SOFTWARE REUSE
APPLICATION-BASED SEARCH and RETRIEVAL DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

The types of search mechanisms discussed here have significant potential for maximizing reuse by facilitating
early identification of candidate software components. They have been prototyped in the missile operational
flight software domain, but they are equally applicable to other domains as well. In order to accommodate
“real" projects, the functions will need to operate at a sufficient level of granularity to identify meaningful com-
ponents; this becomes more complex as additional domains are incorporated into the functions.

186

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS SOFTWARE CONSTRUCTION TOOLS

CHAPTER 19
SOFTWARE CONSTRUCTION TOOLS

Component generation, tailoring, and composition tools can facilitate reuse-based software development.
Composition tools assist the user in constructing new applications from existing components. This may re-
quire the generation of code to glue the parts together. Generation tools assist the user in the generation of
new components. Tailoring tools assist the user in tailoring existing components to the user's application.
They operate most effectively if the operational domain can be constrained, thus permitting more domain-
specific information to be captured and used to drive the tailoring process. Although manual tailoring
guidelines can be developed, automated tools can reduce the incidence of errors in the tailoring process and
enhance productivity.

These types of tools reduce the level of detail that must be dealt with in, i.e., less information is required on the
part of the user to effectively use reusable software components in a new application. The the goal of most of
these tools is for production of deliverable quality code, but they may prove particularly useful for developing
prototypes where some of the constraints can be relaxed. A significant amount of research has been and is
being performed into approaches to automating these functions. Much of this work is being conducted by
universities and research laboratories, and may not provide significant payback for some time. Other ap-
proaches can have a more immediate impact (e.g., code generators within limited domains).

Despite the benefits of these tools, they remain in relatively short supply, particularly production-quality tools.
Automated code generation has been a goal almost since the beginning of programming, but has yet to be fully
realized. It is a difficult task at best, and is only made more difficult in the RTE arena by the imposition of
additional constraints on the resulting code, e.g., space and time constraints. Code generation within limited
domains is feasible, i.e., if the problem space can be sufficiently constrained, it is possible to generate high
quality code. Limiting the problem domain reduces the number of available choices and allows more domain-
specific knowledge to be captured and used in the code generation process.

With all of these benefits, the logical question is, "Why aren't these types of tools more commonly available?"
Generally, they require a significant investment to develop, and there is, as yet, no guaranteed success. The
code or types of code that a generation system would support must either be particularly critical or heavily used
in order to make their development cost-effective. There have been some success with tools of this type in
narrow domains. In fact, when FORTRAN was first introduced, some considered it to be an automated code
generation system. Draco (Reference [32]) was an early research system that tied code generation and reuse
together. Although the benefits of automated code generation are obvious, the realization of their promise has
eluded researchers for many years. In the following case study, the CAMP prototype construction/generation
approach is discussed.

19.1 Case Study: The CAMP Constructors

During the CAMP program, a prototype composition/tailoring/generation tool was developed; it was referred
to as a component constructor. Twelve such constructors were developed. Each was a software system
capable of producing project-tailored Ada software components given domain knowledge, programming
knowledge, and knowledge of the application requirements. The goal of these constructors was to produce
usable application code tailored to the user’s requirements, and to facilitate software reuse by reducing the need
for both detailed knowledge about specific parts and the level of Ada expertise that is required to use the parts.

187

MAXIMIZING SOFTWARE REUSE
SOFTWARE CONSTRUCTION TOOLS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

The CAMP constructors provided the user with a means of generating customized software components from
existing software parts and standard designs. Code generation was attainable in this case betause of the nar-
row domain in which it was attempted. Code generation in the general sense is not yet feasibie.

These constructors facilitate the use of both complex generic parts and schematic parts (these were discussed
in Chapter 3). Complex generic parts are Ada parts that require both data types and operators, and may also
have complex interactions with other reusable parts (e.g., the CAMP Kalman filter or autopilot parts). Infor-
mation about selected generic parts is contained within the constructor. The constructor defines data types,
generates the instantiation for the generic, and identifies other CAMP or user-supplied parts which may be
needed by the complex generic part.

Schematic parts are parts whose commonality cannot be captured directly using Ada language features (e.g., a
static sparse matrix). A schematic part consists of a "blueprint”" or template of the part’s structure. The con-
structors use the blueprint, together with a set of component construction rules and the user’s specific require-
ments to create a new software component. This new component is generated following the basic outline of
the schematic part; the user’s requirements provide the tailoring information. Figure 19-1 depicts the CAMP
approach to generating speciiic tailored components from schematic parts. Although in the CAMP implemen-
tation, Ada was the language under consideration, the concept of schematic parts is applicable to other lan-
guages as well. Schematic parts extend the range of reusable software components.

SCHEMATIC PARTS

PART BLUEPRINT

TAILORED
APPLICATION

(- _ cope
'KUSER REQUIREMENT —
COMPONENT CONSTRUCTION —~—
. Aues
I .. THEN ...
IF . THEN ..

Figure 19-1: CAMP Schematic Reuse

The user enters requirements to the constructor by responding to prompts which are based on component
knowledge stored in both the constructor and the requirements knowledge base. The knowledge consists of
things such as data types and other applicable reusable parts. At each requirements definition session, the user
creates a set of requirements which can be named, stored, and later retrieved and replayed. This requirements
set is used by the constructor to generate the constructed Ada component; a "help" file is also constructed
which contains useful information for the user of the component. Previously entered requirements sets can be
retrieved and used either "as is" or with modification to regenerate the component.

The 12 constructors prototyped during the CAMP program covered Kalman filter operations, autopilot {2), data
type det.nition, data bus interface, finite state machine, navigation operations (2), and abstract processes (time
and event driven sequercers, a task shell constructor, and a process control constructor). In the following
paragraphs the Kalman filter constructor is discussed in detail.

188

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS SOFTWARE CONSTRUCTION TOOLS

19.1.1 An Example: The CAMP Kalman Filter Constructor

Figure 19-2 presents a simplified view of a Kalman filter for missile operational flight software; Kalman filters
are also used in other application areas. As previously discussed, the Kalman filter receives sensor and naviga-
tion position input, and calculates position and ISA corrections which feed back into the navigation and ISA
systems.

SENSORS
POSITION
NAV KALMAN ALTER ™
POSITION CORRECTIONS
]
Nim
SENSOR ISA CORRECTIONS

Figure 19-2: High-Level View of Missile Kalman Filter

The CAMP Kalman Filter part is made up of a number of Ada packages; Figure 19-3 depicts the package

structure.
‘ KALMAN FILTER I

[i

PROPAGATE PHI and @ KALMAN UPDATE
SEQUENTIALLY UPDATE
Pand X
1 i | -1
COMPUTE UPDATE P UPDATE STATE
PROPAGATE PHI ALMAN GAIN VECTOR (X) PROPAGATE P

Figure 19-3: CAMP Kalman Filter Parts Hierarchy

189

MAXIMIZING SOFTWARE REUSE
SOFTWARE CONSTRUCTION TOOLS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

19.1.1.1 Kalman Filter Matrices

In order to address the efficiency needs of Kalman filter operations, special matrix parts were created. In all,
five different CAMP matrix parts were created to support specific Kalman filter operations. There is a general-
ized matrix package which supports all types of matrix multiplications, matrix-scalar operations, etc. on a
general-purpose matrix, but due to efficiency constraints, the general-purpose matrix is suitable primarily for
study and analysis, i.e., it is not efficient enough for most embedded applications. only. Other special-purpose
packages were developed for diagonal, symmetric, and sparse matrix types.

Two types of storage are supported for symmetric matrix types: full storage and half storage. The difference is
in whether the entire matrix is stored (full storage), or if only half of the matr:x is stored with the symmetric
properties being used to maintain the other data points (half storage). The advantage of using full storage is that
access to individual data values is faster; the advantage of the half storage matrix is that storage is saved.

Two types of sparse matrices are available — dynamically sparse and statically sparse. The dynamically sparse
is slower in terms of access time because the part must verify that the value is non-zero before performing an
operation. With static sparse matrices, the zero and non-zero elements are known in advance, and the non-
zero elements can be accessed directly without performing the zero-test first.

Because of the variability in static sparse matrices, these data types cannot be captured as Ada generics — the
generic CAMP parts can, at best, incorporate dynamically sparse matrix types. Incorporation of static sparse
matrix types is limited to Kalman filter components generated either by hand or by the Kalman filter construc-
tor. During the CAMP domain analysis, the Kalman filter experts indicated that statically sparse matrices were
generally used, and that their development was both time-consuming and error-prone. It is possible to capture
the algorithm for generating both the data type definition and the operators, thus a constructor was developed
to facilitate the process.

19.1.1.2 Tailoring

The Kalman filter constructor allows the user to tailor the CAMP Kalman filter parts by supplying application-
specific data type information. In the prototype implementation, the data type information can be supplied in
one of two ways: (1) by the constructor with the user providing a small amount of application-specific tailoring
information (referred to as the default data type approach), or (2) via interactive definition of the types with the
user who is prompted for all of the information required to define all of the data types.

Using the default data type approach, the user must provide the following information:

¢ The precision of the floating point type that is used for the matrix elements

¢ The number of states, and if he wants to refer to them by number or name

» The names of the states (if he has indicated reference by name)

¢ The number of measurements, and if he wants to refer to them by number or name

¢ The names of the measurements (if he has indicated reference by name)
The user’s requirements lead to the definition of data types for the matrix elements and the matrix indices
(states and measurements); all of the matrix types are produced via instantiations of other CAMP generic com-
ponents. '

If the user wants to define the data types himself, type definitions are generated for any matrix that the user
declared as statically sparse; all of the required operations for these types are also generated. These type
definitions are based on input received from the user on which matrix elements are non-zero. The static sparse

190

MAXIMIZING SOFTWARE REUSE
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS SOFTWARE CONSTRUCTION TOOLS

matrix is declared as a record of non-zero elements. Operators are produced that allow multiplication between
the static sparse matrix types and other matrix types. As in the first case, any non-static-sparse matrix types
are still produced via instantiations of CAMP matrix parts.

In order to facilitate the use of the constructed code, a help or summary file is also produced. This file contains
information on the names and locations of the generated code, and on what packages need to be with'd into
the user’s application in order to make use of this code. The Kalman filter operations come from the CAMP
generic Kalman filter parts. The real variability of the Kalman filter is captured in the data types package.

19.2 Future Directions

For now, the future trends in software generation/composition point to more domain-specific tools rather than
generalized code generation. By limiting the scope of the problem, much more can be accomplished, thus we
will undoubtedly see more emphasis on software generation in narrow, high-potential domains. Generation will
probably expand to include both code and documentation. There will also be greater emphasis on integrating
this type of tool into a software development environment rather than providing it as a stand-alone tool.

191

MAXIMIZING SOFTWARE REUSE
SOFTWARE CONSTRUCTION TOOLS DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

192

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS APPENDICES

APPENDICES

193

APPENDICES

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

194

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS OVERVIEW of the CAMP PROGRAM

APPENDIX I
OVERVIEW of the CAMP PROGRAM

The Common Ada Missile Packages (CAMP) program is a contracted research and development effort that
grew out of the so-called DoD software crisis. This crisis has been characterized by escalating software costs,
delays in deliveries, products of questionable quality, and a shortage of adequately trained personnel. Two
initiatives that have potential for partially ameliorating the crisis are programming language standardization and
software reuse. The DoD has provided Ada as the standard programming language for mission-critical applica-
tions, and significant work is being done in software reuse.

The main goal of the CAMP program has been to establish the feasibility and value of reusable Ada software
within mission-critical real-time domains. This has required a careful examination of a particular domain, the
development of reusable Ada components, the development of automated support for software reuse in the
software development lifecycle, and the application of both the reusable components and the automated tools
to a realistic application. Although the CAMP project was specifically tasked with exploring the missile opera-
tional flight software domain, there is significant carry-over of lessons-learned to other RTE domains. The
CAMP program has been sponsored by the U.S. Air Force Armament Laboratory at Eglin AFB.

1.1 Phase 1: Feasibility Study

The CAMP program began in 1984, with a 12-month feasibility study. There were two major objectives: (1) to
determine if sufficient commonality existed within the missile operational flight software domain to warrant the
development of reusable software parts, and if commonality was found, to identify and specify the parts; and (2)
to determine the aspects of parts engineering that could be fully or partially automated, and to develop the
requirements and top-level design for a parts composition system to support reuse.

The major tasks performed during CAMP-1 are described below.

¢ Domain Analysis: A domain analysis was conducted to determine if sufficient commonality ex-
isted to warrant the development of reusable software parts. This analysis involved the examina-
tion of documentation and source code for 10 existing missile software systems. The result of
this analysis was the identification of over 200 common operations, objects, and structures that
could be captured as reusable parts. A Software Requirements Specification (SRS) was prepared
for these parts in accordance with DOD-STD-2167.

e Ada Parts Design: An architectural design was developed for each part that was identified and
specified. The design was documented in a Software Top-Level Design Document (STLDD) in
accordance with DOD-STD-2167.

» Part Composition System (PCS) Investigation: The purpose of this investigation was to determine
the aspects of software engineering with parts that could be automated. The result of this inves-
tigation was the development of an SRS for a prototype tool called the Ada Missile Parts En-
gineering Expert (AMPEE) system. The goal of this tool was to assist a software engineer in
identifying, locating, understanding, using, and managing the reusable Ada missile parts.

o AMPEE Design: After the requirements were specified, the architectural design of the AMPEE
system was developed and documented in a STLDD.

1.2 Phase 2: Technology Demonstration

While CAMP-1 concentrated on feasibility analyses, Phase 2 of the CAMP program (CAMP-2) was a 32-month
technology demonstration phase that began in September 1985. The goal of CAMP-2 was to demonstrate the
technical feasibility and value of reusable Ada missile parts and a PCS by building and using them on a realistic

195

APPENDICES |

OVERVIEW of the CAMP PROGRAM DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

application. Both the parts and the PCS were coded, tested and then used in the "11th Missile" testbed
program — a program aimed at validating software reuse in a realistic RTE application. Benchmarks were also
developed for evaluating the CAMP parts and Ada compilers. The main CAMP-2 tasks are described below.

o Parts Construction: During this task, the detailed design of the parts that were identified during
CAMP-1 was developed. The parts were then coded and tested. During this task, approximately
200 additional parts were identified and implemented, bringing the total number of parts
developed to 454.

o AMPEE System Construction: During this task, the detailed design of the prototype parts com-
position system was developed, and the system was coded and tested. The system was
prototyped in LISP and ART'™ on a SymbolicsTM workstation. The AMPEE system consisted of
a parts catalog, a parts exploration facility, and a set of component constructors. The catalog
provided a means to identify and locate parts. The parts exploration facility provided the user
with high-level access into the parts catalog before he had detailed knowledge of the types of
parts he needed. This facility allowed the user to base his queries on application or domain
knowledge rather than specific parts knowledge. The component constructors were developed to
assist the user in tailoring and composition of software parts for a particular application.

+ 11th Missile Application Development: The "11th Missile” application was so-called because it
was not one of the original 10 missile systems that were examined during the CAMP-1 domain
analysis. This task required the construction of the navigation and guidance systems of an actual
missile application using the CAMP Ada parts and the AMPEE system, and testing of the
developed system in a MIL-STD-1750A hardware-in-the-loop simulation. It served to validate the
concept of a parts-based approach to software development. Although not a full-scale engineer-
ing development, the 11th Missile software was documented in accordance with DOD-
STD-2167.

¢ Armonics Benchmarks: The purpose of this task was to use the CAMP parts to develop a suite
of benchmarks that could be used to measure the effectiveness and efficiency of Ada compilers
for armonics applications. The benchmarks provide information on compilation speed of selected
parts and on the object code size of these parts after compilation. They also provide data on
execution speed and accuracy of operations performed by the parts. There are three categories
of benchmarks: Integrated Execution Benchmarks, Compilation Benchmarks, and Computation
Benchmarks. The Integrated Execution Benchmarks are a set of 3 benchmarks designed to
measure the effectiveness and efficiency of Ada compilers in complex real-time applications such
as guidance and navigation operations. The Compilation Benchr iarks are a set of 3 benchmarks
designed to determine the effectiveness of Ada compilers in handling non-trivial use of Ada fea-
tures, such as Ada generics. The Computation Benchmarks are a set of 11 benchmarks designed
to measure the effectiveness and efficiency of Ada compilers in dealing with computationally in-
tense functions.

1.3 Phase 3: Technology Transfer and Refinement

The primary goals of Phase 3 (CAMP-3) are technology transfer and technology refinement. The main tasks
are described below.
o CAMP Parts Set Maintenance and Enhancement: This task called for the enhancement, expan-

sion, and maintenance of the CAMP-2 Ada parts set. As a result of this effort, 32 existing parts
were modified and 50 new parts were added, bringing the total CAMP parts count to 500+,

* Re-engineering of the Parts Engineering System:

- The CAMP-2 prototype catalog was re-engineered in Ada to enhance broad usability. To
this end, no commercial third-party software was incorporated. This effort required
development of the code, associated documentation (SRS and SDD), and a user's manual.
It also required a four-month maintenance and distribution task during which the parts
catalog software and user’'s manual were distributed to 100 customer-approved govern-
ment agencies and contractors.

196

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

F—

APPENDICES

OVERVIEW of the CAMP PROGRAM

at SIGAda.

Figure I-1 identifies the CAMP products.

- The parts exploration facility and constructors are also being re-engineered. The parts
exploration facility will be more readily adaptable to domains other than the missile opera-
tional flight software domain that was examined during CAMP. A new approach to com-
ponent constructors is also being explored. Although the CAMP-2 approach demonstrated
the feasibility and value of constructors, it was costly to implement and maintain. During
CAMP-3, a meta-constructor that can be used in the development of component con-
structors will be prototyped. Both the re-engineered parts exploration facility and the
meta-constructor will be developed in Ada and will include a DOD-STD-2167A SRS and
SDD and development of a user’s manual.

¢ Technology transfer: This effort includes development and distribution of this manual, develop-
ment and distribution of an executive overview videotape that covers the software crisis and the
opportunity that this has created for Ada and software reuse, and a presentation/demonstration

CAMP Ada Parts
¢ Domain Analysis

¢ Software Requirements
Specification

¢ Top-level and Detalled
Design Documents

¢ Tost Plan
o Test Procedure

o Version Description
Document

* User's Guide
® Parts Catalog
¢ Ada parts (500+)

11th Missile Parts Engineering System
¢ Software Requirements o Prototype tool set and
Specification documentation (SRS,
TLDD, SDDD, Test Plan
» Top-level Design o \ ’
Document User's Guide)

« Test Plan and Report and documentation

(SRS, DDD, User's

Armonics Benchmarks Guide)

Final Technical Report
(CAMP-1 & CAMP-2)

Parts Development and Use
Manual

Executive Overview
Videotape

¢ Re-engineered tool set

Figure I-1: CAMP Products

197

APPENDICES
OVERVIEW of the CAMP PROGRAM

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

198

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS SUMMARY of CAMP 11TH MISSILE APPLICATION

APPENDIX I
SUMMARY of the CAMP 11TH MISSILE APPLICATION-

The CAMP 11th Missile Application was a testbed effort undertaken during Phase 2 of the CAMP program. It
involved the construction of an actual missile application using the CAMP Ada parts and the CAMP prototype
Parts Composition System (PCS), and testing of the developed system in a MIL-STD-1750A hardware-in-the-
loop simulation. The initial goals of the application were as follow:

o Construct a complete missile application using CAMP parts and the PCS, and test it in a MIL-
STD-1750A hardware-in-the-loop simulation

o Test the CAMP parts and the PCS, and recommend corrections and improvements

e Evaluate the suitability of the CAMP parts and the PCS for real-time embedded missile applica-
tions

 Quantify the productivity improvement attributable to the use of CAMP parts and the PCS
Although not explicitly stated as goals, the 11th Missile Application also served as the basis for (1) an evaluation
of the suitability of Ada for real-time embedded missile applications, and (2) an evaluation of the suitability of an
Ada/1750A compiler for real-time embedded applications.

The 11th Missile task required development of both code and DOD-STD-2167 documentation, including a
Software Requirements Specification, a Top-Level Design Document, a Software Test Plan, and a Software
Test Report. At completion, the code consisted of approximately 21,000 lines of Ada, and 21 lines of as-
sembly code.

I1.1 What Is the 11th Missile?

During the CAMP domain analysis, the software from 10 missile systems was examined. In order to test the
CAMP parts and prototype tool set in a realistic setting, an "11th Missile" was held in reserve during the CAMP
domain analysis, and a portion of its software was implemented using them. The 11th Missile Application was
based on a cruise missile application that was originally implemented in JOVIAL J73. The original application
had five MIL-STD-1750A processors and an Inertial Sensor Assembly (ISA), which communicated by means of
a MIL-STD-1553B data bus (see Figure II-1).

The shared memory contained terrain altitude data. The processors and their primary functions are described
in Table I-1. In addition to those functions, all processors were programmed to (1) restart the application
program, (2) return control to start-up ROM, (3) communicate via the 1553B bus, and (4) issue periodic status
messages.

The 11th Missile Application was a re-implementation (starting with a new requirements specification) of the
navigation, ground alignment, Kalman filtering, ISA interface, lateral guidance, lateral-directional autopilot, and
support functions of the original software. The navigation, Kalman filtering, lateral guidance, and lateral-
directional autopilot were chosen because there were CAMP parts to support those functions. The other
functions were required to complete a functioning computer program.

Two versions of the 11th Missile Application were written. The first version ("Parts Method") was written using
the CAMP parts without assistance from the CAMP PCS. The second version ("PCS Method") used the PCS to
generate most of the Kalman filter code. The PCS Method implementation was not a complete rewrite of the
code; the PCS-generated Kalman filter code was integrated with the rest of the Parts Method code and unit
tested.

199

APPENDICES
SUMMARY of CAMP 11TH MISSILE APPLICATION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Data Processing Subsystea

Guidanoce Correlation Control
Processor B Processor Frocessor

Sensor g

Systeas Y 13538 Bus Y
: Wavigation - I:::::;l
Processor Assembly
1lth Missile
Systea
Figure II-1: 11th Missile Hardware Design
Table II-1: Processors and Their Functions
PROCESSOR FUNCTIONS
Control Communicates with operator console
Downloads, starts, and stops software in all other machines
Mode logic
Navigation Wander-azimuth navigation
Transfer alignment
Ground alignment

21-state Kalman filter
Start up, test, and communicate with ISA

Guidance Waypoint-steering lateral guidance
Vertical guidance
Lateral-directional autopilot
Correlation Dedicated to Terrain Profile Matching
Sensor Controls sensor system hardware

I1.2 Requirements

The 11th Missile navigation requirements came from several sources. The existing application’s navigation
requirements were documented in an out-of-date MIL-STD-1679 Computer Program Development Specifica-
tion (CPDS); it served primarily as an outline of the high-level requirements. There was also a MIL-STD-1679
Computer Program Product Specification (CPPS), which included Ada Design Language (ADL). Interviews with
the original software developers were held to determine which requirements had changed since the CPPS; in
these cases, the requirements were abstracted from the updated ADL or, occasionally, from the JOVIAL code.

The guidance requirements for the existing application were specified in a MIL-STD-483 B-5 development
specification. The lateral guidance and lateral-directional autopilot algorithms were reused from the Medium
Range Air-to-Surface Missile (MRASM) program, therefore, these requirements were stable and the specifica-
tion was up-to-date and complete.

200

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS SUMMARY of CAMP 11TH MISSILE APPLICATION

The 1553B bus protocols and the formats of all bus messages were specified in a database maintained by the
original application. That project used the database to automatically generate the JOVIAL code that specified
the message formats for the application programs, the FORTRAN code for the real-time-simulation software,
and the interface requirements specification. This database was used during the 11th Missile Application to get
up-to-date message specifications and change notices.

11.3 Results

Various compiler problems were encountered during the 11th Missile development effort, but they all had one
thing in common — they involved the use of generic units. Some of these problems are enumerated below.

» Difficulties in handling instantiations. One compiler was able to compile all of the CAMP parts
required to develop the application, but when the entire application was compiled, the compiler
crashed. The application did compile on another validated compiler.

"o

¢ Inability to resolve overloading of operators when a generic formal subprogram ("+" in this case)
matched an operator already defined by the language (see Figure II-2).

o Inability to identify generic actual subprograms to be used as defaults even though they were
directly visible. Two variations of this problem occurred and are illustrated in Figure 1I-3. In the
first, the correct subprogram was directly visible as the result of with and use clauses on the
subprogram’s package. In the second case, the correct subprogram was directly visible since it
was a generic actual subprogram to the part where problems were encountered.

» An inability to handle separate compilation of generic units, even though compiler documentation
indicated this optional feature was implemented.

Data collected during this effort indicated that with a mature compiler, use of the CAMP parts on this applica-
tion could result in a productivity improvement of up to 15%. This figure is based on an adjusted testing hour
total (4779 actual hours for testing vs. 2630 adjusted hours), where adjustments were made for the effort
expended on compiler problems (see Reference [29] for more details). The adjusted test effort estimate of
2630 hours is 45% of the adjusted total effort, which is roughly in line with the 40%-design/20%-code/40%-
test rule of thumb. Table II-2 shows effort data for the 11th Missile Application.

Table II-3 shows the size of the 11th Missile software in both lines-of-code (LOC) and Ada statements. The
"generated” code consisted of two sparse matrix operators that were generated using portions of preliminary
versions of a CAMP-developed software tailoring tool. Parts statement counts were estimated from the overall
ratio of statements to LOC for the parts (0.634 statements/LOC). The "other reused" test software was
FORTRAN and assembler code used for the hardware-in-the-loop tests. It was estimated that there were 0.9
statements/LOC for this software. Table -4 shows the actual productivity.

CAMP parts constituted 18.1% of the Parts Method implementation of the 11th Missile code and 3.1% of the
test code (Table 1I-3). Using the adjusted effort as a basis, the 11th Missile developers saved 896 work-hours —
15% of the development effort — by using the CAMP parts. Table II-5 compares the adjusted effort with the
estimated effort required had the parts not been used.

201

APPENDICES

SUMMARY of CAMP 11TH MISSILE APPLICATION

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Specification:
generic
type M_Indices is (<>);
type N_Indices is (<>);
type P_Indices is (<>);

type Left Elements is digits <>;

type Right Elements 1is digits <>;

type Result Elements is digita <>;

type Left Matrices is array (M_Indices, N_Indices) of Left_Elements;
type Right Matrices is array (N_Indices, P_Indices) of Right Elements;
type Result Matrices is array (M_Indices, P_Indices) of Result_Elements;

with function "*" (Left : Left_Elements;
Right : Right Elements) return Result Elements is <>;
with function "+" (Left : Result Elements;

Right : Result Elements) return Result Elements is <i;
function Matrix Matrix Multiply
(Left Left_Matricea;
Right : Right_Matrices) return Result Matrices;

Body:
function Matrix Matrix Multiply
(Left : Left Matrices;
Right : Right_Matrices) return Result Matrices is
Anawer : Result Matrices;
begin
for M in M Indices loop
for P in P_Indices loop
Answer (M,P) := 0.0;
for N in N_Indices loop
Anawer (M,P) := Answer (M,P) + f
Left (M,N) * Right (N,P);
end loop;
end loop;
end loop;
return Answer;
end Matrix Matrix Multiply;

- Compiler was unable to resolve this overloading

NOTE: Constrained arrays were used in the design of this part in order to improve the efficiency of the part. While it was
recognized that unconstrained arrays would have made the part more flexible and hence more reusable. the need for
efficiency for real-time embedded applications was considered of greater importance.

Figure 1I-2: Overloaded Operator Caused Problems for Compiler

202

APPENDICES

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS SUMMARY of CAMP 11TH MISSILE APPLICATION

generic
type
type
package
type
type

package

begin

function Sin (Input
end stdTrig;

end BDT;

When attempting to instantiate the following generic:

Angles is
Inputs is
Outputa is
Sin_Cos Ratio is

function Sin (Input : Angles) return Sin_Cos_Ratio is <>;
function Example (Input

One compiler couldn't resolve the default even though the appropriate subprogram was directly
visible through 'with’ and 'use’ clauses:

Angles is digits

Ratios is digits
StdTrig is
Radians is

S8in Cos Ratio is

with StdTrig;

BDT is

type Real is digits 9;
package Trig is new StdTrig (Angles => Real,

with BDT; use BDT;

with Example;

procedure User Application is
use BDT.Triqg;

function Attempted Instantiation is new Example

(Angles
Inputs
Outputs

Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio); /

end User_ Application;

Another compiler couldn’t resolve the default even though it was visible as a generic formal

subprogram:
generic
type Angles is digits <>;
type Inputs is digits <>;
type Outputs is digits <>;
type Sin_Cos_Ratio is digits <>;
with function 8in (Input : Angles) return Sin Cos_Ratio is <>;
package Sample is
end'éémple;

with Example;

package body Sample is
function Attempted Instantiation is new Example \
{Angles => Angles, \ problem encountered
Inputs => Inputs, > with this
Outputs => Outputs, / instantiation
Sin_Cos_Ratio => Sin Cos_Ratio); /
end Sample;

: Radians) return Sin_Cos_Ratio;

digita <>;
digits <>;
digits <>;
digits <>;

Inputs) return Cutputs;

<>;
<>;

new Angles;
new Ratios range -1.0..1.0;

Ratios => Real);

=> BDT.Trig.Radians, \ problem encountered
=> BDT.Real, > with this
=> BDT.Real, / instantiation

Figure 11-3: Compilers Had Problems Finding Default Subprograms

203

APPENDICES
SUMMARY of CAMP 11TH MISSILE APPLICATION DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

Table I1-2: 11th Missile Effort

Phase Effort (hours)
Requirements 708
Architectural Design 883
Detailed Design & Code 1306
Testing 4779 (actual) /2630 (adjusted)
Other 371
Total 8047 (actual) /5898 (adjusted)

Table II-3: 11th Missile Size - Parts Method

Lines State-
of Code ments
Operational Code
New 15708 8697
Generated 1108 471
Mod. Parts 897 458
Parts 3911 2480"
Total 21624 12106
Test Software
New 19752 12605
Parts 1114 706"
Other Reused 14544 13090"
Total 35410 26401
* Estimated

Table I1-4: 11th Missile Productivity - Parts Method

New All New All
Operational Operational Developed Developed

LOC/Work-~Month 304.5 419.2 687.4 1105.7
Stmt /Work-Month 168.5 234.7 413.0 746.5
Work-Hours/LOC 0.51 0.37 0.23 0.14
Work-Houras/stmt 0.93 0.66 0.38 0.21

Table 1-5: Effect of Parts on 11th Missile Effort

Effort (hours)

wWith Without
Parts Parts
Phase (Adjusted) (Estimated)

Requirements 708 708
Architectural Design 883 883
Detailed Design & Code 1306 1604
Testing 2630 3228
Other 371 371
Total 5898 6794

Effort Saved: 896 hours

Productivity Improvement: 15%

204

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PARTS DESIGN ALTERNATIVES

APPENDIX HlI
PARTS DESIGN ALTERNATIVES

Six methods for the design of reusable Ada parts were investigated during the CAMP program. Figure IlI-1
illustrates these methods. As a result of this investigation, a hybrid approach known as the semi-abstract data
type method was developed and used on the CAMP program. The semi-abstract data type method is based on
the generic and overloaded methods. The six basic methods that were investigated will be described in this
appendix; the semi-abstract method is described in Chapter 5.

TYPELESS APPROACH OVERLOADED APPROACH

ABSTRACT DATA TYPE &
ABSTRACT STATE MACHINE APPROACHES SKELETAL APPROACH

| STANDARD
CALCULATE . . _ &, INTERNAL
Z ‘ REPRESENTA-

[
+
:
'

<A>,,<C>

Figure HlI-1: Reusable Parts Design Methods

In discussing the alternative methods, a specific CAMP part will serve as an example. This part, Compute_
Earth_Relative_Horizontal_Velocities, has three inputs:

e Nominal_East_Velocity (VEL)

¢ Nominal_North_Velocity (VELyy)

o Wander_Angle (WA)

It processes these inputs through the following equations:
. VE.LE (- VELNE * cos (WA) - VELNN * sin (WA)
o VELy := VELyy * cos (WA) + VELyg * sin (WA)

producing the following outputs:
e True East Velocity (VELg)
* True North Velocity (VELy)

205

APPENDICES
PARTS DESIGN ALTERNATIVES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

The computations performed in this example require trigonometric functions on Wander_Angle plus multiplica-
tion and subtraction operators. In addition, the multiplication operator must perform its operation on data of
different types, namely, a velocity type and a sine- or cosine-of-an-angle type. These mathematical functions
must also be provided for all possible combinations of data types for velocities and angles. For example, if
velocity is measured in feet-per-second and angle is in radians, the following mathematical operations are re-
quired:

¢ Sine and cosine operations on radians;

o Multiplier for feet-per-second by the result of the sine and cosine operations; and,

¢ Subtractor for the result type of the multiplier.

The discussion will explain the methods for parts design and evaluate their effectiveness with regard to the
following four evaluation criteria:

1. Efficiency and appropriateness of the interface;

2. Control for preventing misuse;

3. Availability of required mathematical operators and functions; and,
4. Degree to which the user’s job is simplified.

1.1 Typeless Method

The typeless method asstimes that all data objects and actual parameters will be of some universal type. In the
case of the CAMP program, which was dealing with the missile operational flight software domain, the assump-
tion was that if the typeless method were used, the data objects and actual parameters would be of the universal
float type. The benefit of this approach is that it alleviates the need for special mathematical operators and
functions since they are already defined in standard packages. The disadvantage is that the compiler and
run-time system cannot perform type checking to prevent misuse of the part.

For example, consider the case of an SDI-related experiment in 1985. The experiment required an orbiting
receiver to track a ground-based laser. The transmitter was positioned at an elevation of approximately 10000
feet; this elevation was to be entered into the flight computer of the receiver's orbiting platform. The flight
computer was programmed to accept ground elevation in nautical miles not feet, however, so when 10000
was entered, the platform oriented the receiver to point to a position 10000 miles above the surface of the
earth, exactly 180 degrees from the correct location, 10000 feet above the surface. Strong typing of
parameters could prevent this type of problem. Figure -2 illustrates the data type and object declarations
which could be used. This would restrict the input values of Transmitter_Elevation to a reasonable range for
units of nautical miles.

type Nautical Miles is digits 6;
subtype Ground Elevation is Nautical Miles range -1.0 .. 6.0;

Transmitter Elevation : Ground Elevation;

Figure I1I-2: Strong Data Typing Example

The specification shown in Figure IlI-3 illustrates the application of the typeless method to the sample part. A
user application accessing this procedure could pass any object of the type FLOAT as actual parameters. The
compiler could not perform type checking to prevent possible type mismatching and there could be no run-time

206

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PARTS DESIGN ALTERNATIVES

checking to ensure correct ranges for the actual parameters. This method produces parts which are easy to
use, but offers no protection against misuse. :

procedure Compute Earth_Relative Horizontal Velocities
(Nominal East Velocity : in FLOAT;
Nominal North_Velocity : in FLOAT;
Wander_ Angle i in FLOAT;
East_Velocity : out FLOAT;
North Velocity H out FLOAT):;

Figure llI-3: Typeless Method Example

1.2 Overloaded Method

To allow a greater choice in data typing, the overloaded method provides the user a separate version of each
part to allow for the different combination of data types which the part user might require. The code segment
shown in Figure [ll-4 tllustrates the overloaded method applied to the example when Wander_Angle is in
Radians and the velocities are of type Feet_Per_Second and Meters_Per_Second.

package Overloaded Method is

procedure Compute_Earth_Relative Horizontal Velocities

(Nominal_ East_Velocity : in Feet_ Per Second;
Nominal North Velocity : in Feet_ Per_ Second;
Wandec_ Angle : in Radians;
East_Velocity : out Feet Per_Second;
North Velocity : out Feet Per_Second);

procedure Compute Earth Relative_ Horizontal_Velocities

(Nominal_East Velocity : in Meters Per Second;
Nominal North_Velocity : in Meters_Per_ Second;
Wander Angle : in Radians;
East_yelocity : out Meters_Per_ Second;
North Velocity : out Meters_Per_ Second);

end Overloaded Method;

Figure III-4: Overloaded Method Example

Other overloaded subprograms would allow Wander_Angle in degrees and semicircles. This is the method used
by Ada packages such as STANDARD, CALENDAR, and TEXT_IO to provide identical operations on different
data types.

The overloaded method offers the protection of strong data typing with simplicity of design and use of parts.
The designer will decide which combinations of data types to allow for each part and will explicitly declare the
parameter interfaces for each overloaded subprogram. He will also define all of the mathematical parts which
the subprograms will use: sine and cosine for Wander_Angle, and the multiplication and subtraction operators.
Ada type checking will ensure that actual and formal parameters match and that the values of the actual
parameters fall within ranges allowed by the type.

Because Ada supports this overloading of subprogram definitions, the user need not call a version of a part
specific to a given combination of data types; the Ada disambiguation feature will resolve the call. In fact,
should user requirements change and a different combination of data types result, the call need not be changed

207

APPENDICES
PARTS DESIGN ALTERNATIVES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

— the Ada language will resolve the new reference. This method provides simplicity of use with the protection
assoclated with strong data typing. ‘

The major disadvantage of this method is the large number of parts declared at the architectural level. For the
data types stated above (Feet_Per_Second and Meters_Per_Second for velocities and Radians, Degrees, and
Semicircles for angles), the Compute_Earth_Relative_Horizontal_Velocities procedure would require six
specifications and bodies to accommodate the different combinations of data types. A navigation package
encapsulating a complete set of reusable navigation parts could easily grow to over 100 subprograms. Thus, the
overloaded method, while simple to use, would be almost impossible to develop and maintain.

111.3 Generic Method

The generic method uses Ada generic units to provide parts which are tailorable to user-defined data types.
Figure IlI-5 shows the generic method applied to the Compute_Earth_Relative_Horizontal Velocities procedure
using generic formal types for Velocities, Angles, and Sin_Cos_Ratio (the type returned by a call to Sine or
Cosine), and generic formal subprograms for the required trigonometric functions and the multiplication
operator. The subtraction operator operates only on the generic velocity type and is implicit from the generic
definition.

generic
type Sin_Cos_Ratio is digits <>;
type Velocities is digits <>;
type Angles is digits <>:
with function "*" (Left : Velocities;

Right : Sin_Cos_Ratioc) return Velocities is <>;
with function Sin (In_Angle : Angleas) return Sin_Cos_Ratio is <>;
with function Cos (In_Angle : Angles) return Sin_Cos_Ratio is <>;

procedure Compute Earth Relative Horizontal Velocities
(Nominal_Eaat_Velocity : in Velccities;
Nominal North Velocity : in Velocitaies;
Wander Angle : in Angles;
East Velocity : ocut Velocities;
North_Velocity : out Velocities):

Figure III-5: Generic Method Example

The generic formal subprogram parameters are used within the body of the part to perform mathematical
operations on objects of the generic data types. For example, the sine and cosine operations on Wander_
Angle are performed by the functions supplied as actual parameters for the generic Sin and Cos. The user
must define operators to perform these functions on objects of the actual type for Angles returning an object of
the Sin_Cos_Ratio type. This large number of generic parameters could place an enormous burden on the part
user, requiring him to create and supply all of the needed actual parameters, both types and subprograms. For
the example, the user must supply three data types plus three subprograms as actual parameters.

A method which uses default parameters could alleviate some of this overhead from the part's user. If the total
parts design includes typical data types and provides functions for typical combinations of these data types. then
the user could provide predefined types as actual type parameters and the actual subprogram parameters will
default to the predefined functions. Figure IlI-6 illustrates this method. Using the same example, the design
could incorporate a separate data types part supplying a Radians type and trigonometric operations on
Radians. The multiplication operator could be similarly predefined. This approach yields a tunneling of
parameters, where explicit use of a type (e.g., Radians) allows tunneling of operators (e.g., sine, cosine, "*") on

208

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PARTS DESIGN ALTERNATIVES

that type. The advantage of this method is clear: the user obtains the protection associated with strong data
typing and the flexibility of using a choice of data types without the need to define his own types or operators.

WANDER_AZIMUTH_NAVIGATION _PARTS

COMPUTE_EARTH_RELATIVE
HORZONTAL_VELOCITES

e

POLYNOMALS TRIG

Sin_Cos_Ratio

Sine

Cosine

Figure III-6: Tunneling of Parameters

II1.4 Abstract State Machine Method

The abstract state machine method affords the part user a very high-level interface to reusable parts. In this
method, the interface is a package structure defining all of the characteristics of the missile state relevant to a
group of navigation operations. The interface is strictly through the operations, as the user does not have
direct access to or knowledge of the data structure on which the operations work (Reference (5], p. 202). The
state machine allows the underlying structure to change without the users’ knowledge.

The state machine implementation of a navigation system would provide all of the operations needed to per-
form the navigation function, both those changing the state and those reporting the state. One such function
would be the Compute_Earth_Relative_Horizonal_Velocities operation which would both update and report the
velocity. Figure [II-7 contains a code segment to illustrate the abstract state machine method.

The abstract state machine approach utilizes generic units to tailor operations to the user’s requirements. Like
the generic method, this approach enforces strong data typing and provides protection against misuse.
However, because all operations are encapsulated in a single package, the user is presented with an "“all or
nothing" solution: specify all of the generic parameters for all operations, whether needed or not, or don't use
the package.

209

APPENDICES
PARTS DESIGN ALTERNATIVES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

generic
type Sin_Cos_Ratio is digits <>;
type Velocities 1s digits <>;

type Angles is digits <>;
type Altitudes is range <>;
with function "*" (Left : Velocities;

Right : Sin_Cos_Ratio) return Velocities is <>;
with function Sin (In_Angle : Angles) return Sin_Cos_Ratio is <>;
with function Cos (In_Angle : Angles) return Sin Cos_Ratio is <>;

package Navigation_State_ Machine is

procedure Compute Earth_Relative Horizontal Velocities

(Nominal_East_Velocities : irn Velocities;
Nominal North_Velocities : in Velocities;
Wander Angle : in Angles;

Bast _Velocities : out Velocities;
North Velocities : out Velocities);

procedure Update Altitude
(Vertical Velocities : in Velocities;
Current_Altitude : out Altitudes);
-~ =-operations to provide state information
function Current_ East_Velocities return Velocities;

function Current North Velocities return Velocities;

end Navigation State_Machine;

Figure III-7: Abstract State Machine Method Example

An alternative approach is to encapsulate the data typing and structure within the package, forcing the part
user to convert his types to conform to those provided by the abstract state machine. While defining all internal
data types and operations makes the part easier to use, the overhead of conversion to the internal data struc-
ture would be prohibitive. This conversion would entail not only data typing, but also unit conversion, from
meters to feet, radians to degrees, etc.. The package could provide interfaces to simplify the unit conversion,
but could do little to alleviate the overhead.

The state machine approach does offer an advantage of creating more than one body for a single specification.
Because all data is controlied within the body, a part user may use only the specification and write his own
body, defining data according to his own needs. Similarly, the parts designer may provide multiple bodies for a
single specification, thus alleviating the efficiency issues by creating bodies which are efficient for a particular
situation. Like the overloaded method, this increases the cost of creating parts, yet is an effective method when
the choice of a data structure cannot, for reasons of efficiency or simplicity, be established in the package
specification.

1I1.5 Abstract Data Type Method

Like the abstract state machine method, the abstract data type method offers the part user a high-level inter-
face to reusable parts. This interface consists of a predefined set of operations on a data structure, and, unlike
the abstract state machine, the interface includes the data structure itself. The user, therefore, knows the
structure he is dealing with and, depending on the implementation, may even be able to access the structure
directly. In the abstract data type method the user is aware of changes to the state of the structure which are
affected by the exported operations.

210

o

APPENDICES
DEVELOPING and USING ADA PARTS in RTE APPLICATIONS PARTS DESIGN ALTERNATIVES

In most implementations, access to objects of the abstract type are restricted to operations defined in the
package specification. In contrast to the abstract state machine, this type definition is part of the specification,
and the package body must operate on that unique structure. If a part user wants to use the operations of the
abstract data type but use a different data structure, he must not only rewrite the body which will operate on the
data structure, but also rewrite the specification that defines the structure. This methc. ~ 'ised extensively in
abstract data structures such as vectors and matrices, stacks and queues, but is less appropriate for more com-
plex data structures such as those used by a navigation system or Kalman filter.

A package which implements the navigation system according to the abstract data type method locks quite
similar to that of the abstract state machine (see Figure III-8). The major distinction is the private section of
the specification which defines the abstract data structure.

generic

type Sin_Cos_Ratio ia digits <>;

type Velocities is digits <>;

type Angles is digitas <>:

type Altitudes is range <>;

with function "*" (Left : Velocities;

Right : Sin_Cos_Ratio) return Velocities is <>;

with function Sin (In_Angle : Angles) return Sin Cos_Ratio is <>;
with function Cos (In_Angle : Angles) return Sin_Cos_Ratio is <>;

package Navigation_State_Machine is
type Navigation Model is private;
procedure Update_Earth_Relative Horizontal Velocities
(Nominal_Eaat_Velocity ¢ in Velocities;
Nominal North_Velocity : in Velocities);

procedure Compute Earth_Relative Horizontal Velocities
(Updating : in out Navigation_Model);

procedure Update Vertical Velocity
(Vertical Velocity : in Velocities);

procedure Compute Altitude
(Updating : in out Navigation_Model);

-~ --operations to information from data structure

function Current East Velocity
(Based_On : Navigation_Model) return Velocities;

function Current_North Velocity
(Based_On : Navigation_Model) return Velocities;

private -- Definition of Navigation Abstract Data Structure
type Navigation Model is
record
Missile Velocity : Velocities;
Missile Altitude : Altitudes;
end record

end Navigation_ State_ Machine;

Figure II-8: Abstract Data Type Method Example

211

APPENDICES
PARTS DESIGN ALTERNATIVES DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

This method is similar to the abstract state machine approach in that it utilizes generic units to tailor operations
to the user’s requirements. It uses these generic units to enforce strong data typing and protect against misuse.
The drawback is that the user is again presented with an "all or nothing” solution. The abstract data type
method offers an alternative approach in which the data types are defined in the package specification,
eliminating all of the generic units. While defining all internal data types and operations will ease the use of the
part, the overhead of conversion to the internal data structure would be prohibitive.

II1.6 Skeletal Code Method

The skeletal code method provides the part user with code templates, which may be manipulated in an editor
or through some other tool. This approach gives the part user the flexibility of generic units, without the
complexity of the generic instantiation. A sample template, as shown in Figure [I-9 for the Compute_Earth_
Relative_Horizontal_Velocities, would look similar to the code for the typeless method.

procedure Compute Earth Relative Horizontal Velocities
(Nominal_Eaat_Velocity : in ;
Nominal_North_Velocity : in

~

~

Wander_Angle : in ;
East_Velocity : out ;
North Velocity : out)i

Figure III-9: Skeletal Code Template Method Example

This approach adds complexity by requiring the part user to complete much of the environment. Qutside the
part, he must edit the skeletal code into his existing design, inserting data types and overloaded operators as
required. While the generic method provides a generic specification, and forces conformity through the Ada
generic matching rules, the skeletal method can only provide user documentation to support creation of the
environment. If two or more designers are using similar parts, they may choose different values for completing
the templates, duplicating parts of the environment. There would also be a tendency to avoid strong data
typing to alleviate the overhead attached to creation of overloaded operators and functions.

An expert system, interfacing to the code templates, could support use of the skeletal code method. The
expert system could prompt the user for information it needs to fill in the blanks, but rules, stored in the expert
system knowledge base, would allow the system to complete the environment, filling in additional types,
operators, and any additional subprograms. The expert system approach appears to offer a long-term solution
to the difficulties of the skeletal method by building the environment as a by-product of a user dialog.

ML.7 Summary

The six approaches that were evaluated, as well as the approach that was derived from these, are summarized
below.

¢ Typeless: Simple to design and use, but not robust. All objects are declared floating point types
so there is no error checking on data types.

» Overloaded: There is a separate version of each part to allow for the different combinations of
data types that the user might want; this is the method used in the Ada packages STANDARD
and CALENDAR. Parts are simple to design and use — the designer decides the combinations of
data types that will be allowed for each part and explicitly declares parameter interfaces for these
overloaded subprograms; the Ada disambiguation facility resolves calls so the user does not have
to specify which version of a part he wants. Strict type checking ensures that actual and formal
parameters match and that the values of the actual parameters fall within the ranges allowed by

212

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

the type definitions. The major disadvantage is the large number of parts that have to be
| declared at the architectural level. .

¢ Generic: This method uses Ada generic units to provide parts which are tailorable to user-defined
types. The major disadvantage is that generally the user would need to supply a large number of
generic parameters. This burden can be alleviated by the judicious use of default parameters (i.e.,
the designer provides for typical combinations of data types, and the instantiation will use these
functions as actual subprogram parameters). This method provides flexibility while simplifying
use. Parts can be set up for "tunneling” of operators (i.e., types and operators are predefined,
and the types can then be used to instantiate the generics and the operators will get pulled along).
The major advantage of this approach is that it incorporates strong typing and is flexible.

¢ Abstract State Machine: This is a "black box" approach. Problems with data typing and math-
ematical operators are alleviated because these are all fixed by the designer. The user is provided
with a high-level interface to the parts. There is no direct access to the data structures them-
selves; all access is through the operators provided in the interface. Efficiency problems can arise
because of the need to perform data type conversions so that data will fit the internal represen-
tation. This could be overcome by creating multiple bodies that are efficient for a given situation,
but would increase the cost of parts development. It can be effective when the data structure
cannot be established in the package specification (e.g., Kalman filter operations).

o Abstract Data Type: The data structure is declared in the private section in a package specifica-
tion. The user is still "stuck” with the data structure that the designer provides. If he wants to
change it, he must change both the specification where the data structure is defined and the body.
This method differs from the Abstract State Machine approach in that the interface consists of
both the predefined set of operators and the data structure itself.

o Skeletal Code: This approach provides the part user great flexibility — the user is provided with
a template that he must fill in. Problems may arise when more than one person is working a
project — the template may be filled in differently by different engineers resulting in much
duplication of effort in producing an environment for such a part. There might also be a ten-
dency to avoid strong data typing because of the overhead in creating functions and operators for
strongly typed data. This approach could probably benefit the most from automated tools.

» Semi-Abstract Data Type: The semi-abstract data type method is based on the generic and over-
loaded methods. Efficiency is of the utmost importance. The method utilizes derived types and
subprograms, generic instantiation, and subprogram overloading. Multiple layers of generics
provide the user with a broad selection of parts for an application. Predefined types and
operators can be used to instantiate generic parts. This method is also characterized by what is
referred to as a part bundle. A bundle is a collection of parts dealing with a particular type or
class of operation, together with their environment. A key feature of the semi-abstract data type
approach is the open architecture — the user can substitute his own parts for predefined parts
anywhere in the part hierarchy. The semi-abstract data type is under the user's control.

213

_ﬂ

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

214

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

References

1. Ada Board. Ada Board’'s Recommended Ada 9X Strategy. Office of the Under Secretary of Defense for
Acquisition, Washington, D.C., 20301, 1988.

2. "Murtha Fires Brickbats at Software”. Advanced Military Computing (Oct 1989).
3. Biggerstaff, Ted. (1989). Reuse in Practice Workshop, Pittsburgh, PA.

4, Boeing Aerospace Co. Software Interoperability and Reusability. Tech. Rept. RADC-TR-83-174, Rome
Air Development Center, July, 1983. Volume I, p. 105.

5. Booch, G. Software Engineering with Ada. Benjamin Cummings, Menlo Park, CA, 1983.

6. Booch, G. Software Components with Ada: Structures, Tools, and Subsystems. Benjamin Cummings,
Menlo Park, CA, 1987.

7. Bott, MF. and P.J.L. Wallis. Ada and Software Reuse. Proceedings of the Ada Europe Software Reuse
Seminar, June, 1988.

8. Bott, MF,, R.J. Gautier, A. Elliott. Guidelines for the Use of Ada in Reusable Software Components.
Making Reuse Happen: Component Engineering, Ada Europe Software Reuse Seminar, June, 1988.

9. Braun, Chris and Mamie Lui. Software Reuse in Networking Applications. Proceedings of the Sixth
Washington Ada Symposium, ACM SIGAda, June, 1989, pp. 185-189.

10. Burton, Bruce A., Rhonda Wienk Aragon, Stephen A. Bailey, Kenneth D. Koehler, and Laren A. Mayes.
"The Reusabtle Software Library". IEEE Software Volume 4, Number 4 (July 1987), 25-33.

11. Campbell, Jr., Grady H. Abstraction-Based Reuse Repositories. Proceedings of Aerospace Software
Engineering Conference, AIAA, October, 1989, pp. 368-373.

12. Cohen, Sanford G., Timothy T. Taylor, Common Ada Missile Packages - Phase 2 (CAMP-2), Volume III:
CAMP Armonics Benchmarks. Tech. Rept. AFATL-TR-88-62, Air Force Armament Laboratory, Air Force
Systems Command, United States Air Force, Eglin, Air Force Base, Florida, 32542, November, 1988. (Dis-
tribution limited to DoD and DoD contractors only.).

13. Cohen, Sholom. Locating Resources for Reuse-Based Development. Reuse in Practice Workshop Posi- |
tion Papers, ACM SIGAda, July, 1989. |

14. DeLauer, R.D. Interim DoD Policy on Computer Programming Languages. Letter issued by the Under-
secretary of Defense, Research and Engineering.

15. DoD. Reference Manual for the Ada Programming Language. ANSI/MIL-STD-1815A-1983 edition,
United States Department of Defense, 1983.

16. DoD. Defense System Software Development. DoD Standard DOD-STD-2167A, Department of
Defense, Feb, 1988.

17. Elliott, A., R.J. Gautier, P. H. Welch. Component Engineering in Ada (Some Problems and Some Ad-
vice). Making Reuse Happen: Component Engineering, Ada Europe Software Reuse Seminar, June, 1988.

18. Frakes, W.B. Representation Methods for Software Reuse. Tri-Ada '89 Proceedings, ACM SIGAda, Oct,
1989.

19. Freeman, Peter. "Conceptual Analysis of the Draco Approach to Constructing Software Systems". IEEE
Tutorial: Software Reusability (1987).

20. Gatmey, John E., Jr. An Economics Foundation for Software Reuse. AIAA Computers in Aerospace VII,
AlAA, Oct, 1929, pp, 351-360.

215

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

21. Gruman, Galen. "Early Reuse Practice Lives Up to Its Promise". IEEE Software Volume 5, Number 6
{November 1988). :

22. Holibaugh, Robert, Sholom Cohen, Kyo Kang, Spencer Peterson. Reuse: Where to Begin and Why.
Tri-Ada '89 Proceedings, ACM SIGAda, Oct, 1989.

23. Kitaoka, B. Establishing Ada Repositories for Reuse. Tri-Ada '89 Proceedings, ACM SIGAda, Oct,
1989, pp. 315-323.

24. Lanergan, R.G. and C.A. Grasso. "Software Engineering with Reusable Designs and Code”. IEEE Trans-
actions on Software Engineering Volume SE-10, Number 5 (November 1984).

25. Leavitt, R. Some Practical Experience in the Organization of a Library of Reusable Ada Units. Proceed-
ings, Third Annual National Conference on Ada Technology, 1985, pp. 70.

26. Lubars, Mitchell F. "Code Reusability in the Large versus Code Reusability in the Small’. ACM SIGSoft
Software Engineering Notes Volume 11, Number 1 (Jan 1986).

27. McNicholl, D.G., C. Palmer, et al. Common Ada Missile Packages (CAMP), Volume I: Overview and
Commonality Study Results. Tech. Rept. AFATL-TR-85-93, Air Force Armament Laboratory, Air Force Sys-
tems Command, United States Air Force, Eglin, Air Force Base, Florida, 32542, May, 1986. (Must be acquired
from DTIC using access number B102654. Distribution limited to DoD and DoD contractors only.).

28. McNicholl, D.G., C. Palmer, et al. Common Ada Missile Packages (CAMP), Volume IlI: Part Rationales.
Tech. Rept. AFATL-TR-85-93, Air Force Armament Laboratory, Air Force Systems Command, United States
Air Force, Eglin, Air Force Base, Florida, 32542, May, 1986. (Must be acquired from DTIC using access
number B102656. Distribution limited to DoD and DoD contractors only.).

29. McNicholl, D.G., C. Palmer, et al. Common Ada Missile Packages (CAMP), Voiume II: Software Parts
Composition Study Results. Tech. Rept. AFATL-TR-85-93, Air Force Armamer:t Laboratory, Air Force Sys-
tems Command, United States Air Force, Eglin, Air Force Base, Florida, 32542. May, 1986. (Must be acquired
from DTIC using access number B102655. Distribution limited to DoD and DoD contractors only.).

30. McNicholl, D.G., S. Cohen, C. Palmer, et al. Common Ada Missile Packages - Phase 2 (CAMP-2),
Volume [: CAMP Parts and Parts Composition System. Tech. Rept. AFATL-TR-88-62, Air Force Armament
Laboratory, Air Force Systems Command, United States Air Force, Eglin, Air Force Base, Florida, 32542,
November, 1988. (Distribution limited to DoD and DoD contractors only.).

31. MeNicholl, D.G., C. Palmer, J. Mason, et al. Common Ada Missile Packages - Phase 2 (CAMP-2),
Volume II: 11th Missile Demonstration. Tech. Rept. AFATL-TR-88-62, Air Force Armament Laboratory, Air
Force Systems Command, United States Air Force, Eglin, Air Force Base, Florida, 32542, November, 1988.
(Distribution limited to DoD and DoD contractors only.).

32. Neighbors, J.M. Software Construction Using Components. Tech. Rept. 160, Department of Infor-
mation and Computer Science, University of California, Irvine, 1980.

33. Palmer, Constance. A CAMP Update. AIAA Computers in Aerospace VII, AIAA, Oct, 1989.

34. Prieto-Diaz, Rubin. Domain Analysis for Reusability. Software Reuse: Emerging Technology, [EEE, Oct.,
1987, pp. 347-353.

35. Prieto-Diaz, Rubin, and Petci Freeman. "Classifying Software for Reusability”. IEEE Software (January
1987), 6-16.

36. Sammet, Jean E. "Why Ada is Not Just Another Programming Language". Communications of the
ACM Volume 29, Number 8 (August 1986).

37. SofTech. Ada Reusability Guidelines. Tech. Rept. 3285-2-208/2, U.S. Air Force Systems Command,,
U.S. Air Force Systems Command, Electronic Systems Division, TCS, Hanscom AFB, MA, 01731, 1984.

216

e

DEVELOPING and USING ADA PARTS in RTE APPLICATIONS

38. St. Dennis, R. A Guidebook for Writing Reusable Source Code in Ada, Version 1.1. Tech. Rept.
CSC-86-3:8213, Honeywell Computer Sciences Center, Golden Valley, MN, May, 1986.

39. Software Reuse with Ada, Stockholm, Sweden (Conference), October, 1988.

40. Private Conversation. (Oct 1988). Based on conversation with attendee at Software Reuse with Ada
workshop in Stockholm.

41. Tracz, Will. "Software Reuse Myths". ACM SIGSoft Software Engineering Notes V'olume 13, Number
1 (Jan 1988).

42. Vogelsong, T. Reusable Ada Packages for Information Systems Development (RAPID): An Operational
Center of Excellence for Software Reuse. Tri-Ada '89 Proceedings, ACM SIGAda, Oct, 1989, pp. 324-330.

43. Woodfield, Scott, N., David Embley, Del T. Scott. “Can Programmers Reuse Software?". IEEE Software
(1987), 52-59.

217

